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Wavefield propagation in a heterogeneous medium
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Figure: Numerical simulation of seismic propagation.
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Wavefield propagation in a heterogeneous medium
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Figure: Numerical simulation, two parts summing to the whole.
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Complex medium

Figure: Three or more regions, each could be complex.
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Data flow

Figure: Two windows for data, process, recombine
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Data flow

Figure: Many windows for data, process, recombine
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Data flow - as mathematical operators

Represent the transformations as block matrices

g =
[

V ∗1 V ∗2 · · · V ∗n
]


A1

A2

. . .

An




W1

W2
...

Wn

 f

In operator notation, we write

g = [V ∗AW ]f

In summation notation, we write

g =
∑
k

V ∗k AkWk f
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Generalized frame

Here is a generalization of frame theory:

Definition

A set of operators {W1,W2, . . . ,Wn} forms a generalized frame if
there are constants a, b > 0 with

c · I ≤
∑
k

W ∗
k Wk ≤ b · I.

When the Wk operators are multiplication by functions wk(x), this
definition means

a ≤
∑
k

|wk(x)|2 ≤ b, for all x .

The Wk could give localization in space, in time, or in frequency.
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Frame theory

The difference between a basis and a frame

Figure: A basis, and a MB frame in 2D

– a frame is a set of vectors that spans a linear space, but a bit
more redundant than a basis.
– wavelet, Gabor, curvelet, ridgelet frames ...
– frame theory gives algorithms that treat redundancy efficiently.
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Frame theory

– Analysis operator W = [W1,W2, . . . ,Wn]t , Synthesis op. W ∗

– Frame operator S = W ∗W (positive, invertible)

– normalized frame W̃k = WkS−1/2

– partition of unity (POU) condition∑
k

W̃k
∗
W̃k = I

Theorem

If the generalized frame {W1,W2, . . . ,Wn} form a POU, then the
operator norms on the windowed operator satisfies

||
∑
k

W ∗
k AkWk || ≤ max ||Ak ||.

In particular, if the Ak are each stable wavefield propagators, then
the combined windowed propagator is stable.
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Frame theory

– POU condition on the Wk is important for the functional calculus
– can use pre, post-windows {W1,W2 . . .} and {V1,V2 . . .} with∑

k

V ∗k Wk = I.

– however, the norm of the combined operator may grow with the
number of windows

||
∑
k

V ∗k AkWk || ≈
√

n max ||Ak ||

which can cause numerical instability.
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An unstable propagator

By picking windows and shifts just right, get unstable propagator.

Figure: Breaking up a waveform into five, shift just right

Input waveform has energy
√

12 + 12 + 12 + 12 + 12 =
√

5
Output waveform has energy

√
52 = 5, increases!
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Possible solutions

– shifting the waveform seems to be an issue (FIOs)
– can hope for better results using differential operators (PsDOs)
– controlling the step size may control instability (we control step
size already for fidelity, could be why our current methods are
stable anyway)
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Preserving minimum phase signals

When designing these windowed operators, should preserve as
much physics as possible.

Eg: dynamite blast is “minimum phase”:
most of the energy is concentrated near the start. As it
propagates, it remains minimum phase.

What kind of linear operators preserve minimum phase?
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Minimum phase signals

Theorem

(Paley-Wiener) If a signal is causal, then its log amplitude
spectrum is integrable. In particular, not too many zeros.

Any causal signal has a minimum phase equivalent (f0, f1, f2, . . .),
given by a complex function

F (z) = exp

(
1

2π

∫ π

−π

e iθ + z

e iθ − z
log A(θ) dθ

)
=

∞∑
n=0

fnzn

which is analytic on the disk |z | < 1. No zeros or poles! (outer)
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Paley rests in Banff

Figure: Fossil Mountain, north of Banff townsite, Paley perished 1933.
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Decay operator

A nonstationary, min-phase preserving operator is given by the map

(f0, f1, f2, f3, . . .) 7→ (r 0f0, r
1f1, r

2f2, r
3f3 . . .),

for any positive constant r ≤ 1. This maps analytic functions as

F (z) 7→ F (rz)

and it is easy to check this maps outer to outer.

Figure: Constant decay

The only diagonal min-phase preserving operators we found.
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General Q-decay operator

A more general min-phase preserving operator can be prescribed on
analytic functions as

F (z) 7→ G (z)F (zφ(z)),

where G (z), φ(z) are both outer functions.
The G (z) gives stationary convolution (min-phase preserving). The
other part gives a type of Q-attenuation decay. The delta spike

δn = (0, 0, 0, . . . , 1, 0, 0, . . .)

maps to the function G (z)(zφ(z))n which has Fourier spectrum

Hn(θ) = G (e iθ)enh(θ)

With increasing time shifts n, we get exponentially increasing
decay, which is frequency dependent. (Re(h) ≤ 0)
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Is that all there is?

– Have not been able to find any other min-phase preserving
operators. Only some partial results.
– Can show the image of the delta spikes show spectral decay:

|Hn+1(θ)| ≤ |Hn(θ)| for all n, θ.

– There are convexity conditions as well.
– Still a gap to show the Q-decay operators cover everything.
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Is that all there is?

The spectral decay condition can be visualized:

Figure: Each column of min-phase preserving operators in a min-phase
signal signal. Plot of spectra shows a decreasing sequence of functions.
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Pushing signal to min phase

Figure: Map on the unit disk in complex plane

Applying a nonstationary min-phase preserving operator gets rid of
zeros. Makes a signal look ‘’more like” min-phase.
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Conclusions

– generalized frame theory gives a context for analyzing our
window algorithms.
– covers windows in space, time, or frequency slices.
– POU condition with symmetric windows gives stable propagators.
– can construct counterexamples in the non-symmetric case.
– enforcing minimum phase properties on operators leads to
analytic function theory, outer functions, maps of the unit disk.
– future work is to use this framework to better design operators
for our imaging needs.
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