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Gabor theory - time-frequency display

Gabor multipliers are built on a modification of the Fourier transform
Fflw) = / f(s)e > ds,

where we insert a shifted “window function” g(s — t) to get a
time-frequency display of the data:

Gf(t,w) = /oo f(s)g(s — t)e 2™ ds.

—00

This Gf(t,w) is called the Gabor transform of signal f(t).
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Example: Vibroseis sweep, Fourier
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Figure: A synthetic Vibroseis sweep, 2 to 100 Hz, and FFT.




Example: Vibroseis sweep, Gabor




Example: Vibroseis + harmonics, Fourier
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Figure: A synthetic Vibroseis sweep, with harmonics apparent in FFT.




Example: Vibroseis + harmonic, Gabor
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Figure: A synthetic Vibroseis sweep, with 3rd harmonic apparent in Gabor.




Gabor multiplier: filtering a range of time—freq values

The Gabor transform Gf(t,w) is modified by function a(t,w).
Result is the product

a(t,w)gf(t,w),

where a(t,w) is set to one to pass energy at certain t,w, set to zero to
block energy at other t,w.
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Figure: The permissible region of frequencies to pass, in t-w domain.
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Gabor multiplier: the filtered result
The inverse Gabor transform is applied to the product a(t,w)Gf(t,w)
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Figure: The result of non-stationary filtering: harmonic is removed.
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Gabor multiplier: mathematical form
Forward transform, multiply by «, apply adjoint (inverse):

f = Gof = G*MuGF.

Theorem J

There is an approximate functional calculus for Gabor multipliers G, .

Meaning: we can represent a series of physical operations (transmission,
reflection, attenuation of signals) with a series of multipliers.

Theorem

With a good choice of windows, and slowly changing symbol o, the Gabor
multiplier approximates pseudodifferential operators.

Gy ~ Ky or A,.
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Differential operators

The wave equation gives an example of a pseudodifferential operator:

1 92
2
feV f_ﬁﬁf

Phase shift operators, attenuation operators are also pseudodifferential
operators, given in the form

Kof(t) = / h ot,w)f(w)e?™ ™ duw.

—00

Our work shows these operators (and their adjoints) can be approximated
by Gabor multipliers G, which are fast to compute.
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Phase shift operator: «a(t,w) = exp(—27it,w)
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Figure: One pulse, and the phase shifted translate.
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Time-variant attenuation: a(t,w) = exp(—7tw/Q)
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Figure: Two pulses, and their Q-attenuated versions.
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Time-variant attenuation: a(t,w) = exp(—mtw?/Q)
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Figure: Two pulses, modified Q-attenuated versions.
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Time-variant attenuation: « = exp(—7ntw/Q) + min phase
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Figure: Two pulses, min phase Q-attenuated versions.
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Gabor decon — nonstationary deconvolution

Gabor deconvolution is based on an approximate factorization of signals in
the Gabor transform domain.

With source s(t), reflectivity r(t) and recorded seismic data d(t), we have
Gd(t,w) ~ 3(w)a(t,w)Gr(t,w),

where

- Gd(t,w) is the Gabor transform of the data,

-5 is the Fourier transform of the source,

- at,w) is the nonstationary attenuation,

- Gr(t,w) is the Gabor transform of the reflectivity.

What's new? A mathematical derivation of this result.
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Figure: Time-frequency plots of a seismic signal, source, reflectivity.

Gabor decon — nonstationary deconvolution
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Generalized frames
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Figure: We localize a signal by multiplying with a window.

M. Lamoureux (POTSI/CREWES) Gabor Multipliers December 2, 2010 18 /29



Many windows
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Figure: Many windows used. Apply FFT, algorithms to these localized versions.
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Data flow
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Figure: Many windows for data, to process, then recombine.
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Generalized frame operators

A generalized frame operator is given by combining these windows and
local operators:

i Z Wi A W f,
k

where the Wy are the windowing, the Ay the local operators.

Theorem

The partition of unity condition ), W; W) =1 gives boundedness,
stability results for the generalized frame operators.

We can partition the signal by time, location, frequency band, or physical
parameters such as local velocity.

Theorem J

A Gabor multiplier is a special case of the generalized frame operators.
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Example: use local operators to propagate waves

Apply local windows to follow the velocity contours. Propagate waves
through each approx. velocity field individually.

Figure: EAGE Salt model velocity field, 1500-4500 m/s, simulation.
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Example: snapshot 21

Figure: EAGE Salt model velocity field, 1500-4500 m/s, simulation.
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Example: snapshot 41

Figure: EAGE Salt model velocity field, 1500-4500 m/s, simulation.
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Example: snapshot 61

Figure: EAGE Salt model velocity field, 1500-4500 m/s, simulation.
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Example: snapshot 81

Figure: EAGE Salt model velocity field, 1500-4500 m/s, simulation.
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Example: snapshot 100

Figure: EAGE Salt model velocity field, 1500-4500 m/s, simulation.
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Summary

— the Gabor transform is a suite of localized Fourier transforms, gives an
informative time-frequency display.

— the Gabor multiplier is a suite of localized Fourier multipliers.

— Gabor multipliers model differential operators, including reflection,
attenuation, propagation.

— Gabor multipliers are a special case of generalized frame operators,
which partition signals in time, frequency, spatial slices.

— Mathematical results developed to analyze, improve numerical methods.
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