ICIAM 2011

Satellite conferences in Vancouver BC

Applied Mathematics Perspectives Workshops

"Medical and Seismic Imaging"

Thursday to Saturday, July, 14 - 16, 2011. Vancouver BC.

www.mitacs.ca/goto/amp_medicalimaging

Organizers

Dr. Elise Fear (fear@ucalgary.ca)

Dr. Michael Lamoureux (mikel@ucalgary.ca)

Dr. Peter Lancaster (lancaste@ucalgary.ca)

Dr. Gary Margrave (margrave@ucalgary.ca)

Sponsored by

Pacific Insitute for the Mathematics Sciences

Mathematics of Information Technology and Complex Systems.

Consortium for Research in Elastic Wave Exploration Seismology

Gabor multipliers for pseudodifferential operators and wavefield propagators

Michael P. Lamoureux, Gary F. Margrave, Peter C. Gibson

University of Calgary

December 2, 2010

Outline

- Gabor theory time-frequency display
- Q Gabor multipliers
- Oifferential operators
- Gabor multipliers for modelling
- Generalized frames
- 6 Summary

Gabor theory - time-frequency display

Gabor multipliers are built on a modification of the Fourier transform

$$\mathcal{F}f(\omega) = \int_{-\infty}^{\infty} f(s)e^{-2\pi is\omega} ds,$$

where we insert a shifted "window function" g(s-t) to get a time-frequency display of the data:

$$\mathcal{G}f(t,\omega) = \int_{-\infty}^{\infty} f(s)g(s-t)e^{-2\pi is\omega} ds.$$

This $\mathcal{G}f(t,\omega)$ is called the Gabor transform of signal f(t).

Example: Vibroseis sweep, Fourier

Figure: A synthetic Vibroseis sweep, 2 to 100 Hz, and FFT.

Example: Vibroseis sweep, Gabor

Figure: A synthetic Vibroseis sweep, 2 to 100 Hz, and Gabor transform.

Example: Vibroseis + harmonics, Fourier

Figure: A synthetic Vibroseis sweep, with harmonics apparent in FFT.

Example: Vibroseis + harmonic, Gabor

Figure: A synthetic Vibroseis sweep, with 3rd harmonic apparent in Gabor.

Gabor multiplier: filtering a range of time-freq values

The Gabor transform $\mathcal{G}f(t,\omega)$ is modified by function $\alpha(t,\omega)$. Result is the product

$$\alpha(t,\omega)\mathcal{G}f(t,\omega),$$

where $\alpha(t,\omega)$ is set to one to pass energy at certain t,ω , set to zero to block energy at other t,ω .

Figure: The permissible region of frequencies to pass, in t- ω domain.

Gabor multiplier: the filtered result

The inverse Gabor transform is applied to the product $\alpha(t,\omega)\mathcal{G}f(t,\omega)$

Figure: The result of non-stationary filtering: harmonic is removed.

Gabor multiplier: mathematical form

Forward transform, multiply by α , apply adjoint (inverse):

$$f \mapsto G_{\alpha}f = \mathcal{G}^*M_{\alpha}\mathcal{G}f.$$

Theorem

There is an approximate functional calculus for Gabor multipliers G_{α} .

Meaning: we can represent a series of physical operations (transmission, reflection, attenuation of signals) with a series of multipliers.

Theorem

With a good choice of windows, and slowly changing symbol α , the Gabor multiplier approximates pseudodifferential operators.

$$G_{\alpha} \approx K_{\alpha}$$
 or A_{α} .

Differential operators

The wave equation gives an example of a pseudodifferential operator:

$$f \mapsto \nabla^2 f - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} f$$

Phase shift operators, attenuation operators are also pseudodifferential operators, given in the form

$$K_{\alpha}f(t) = \int_{-\infty}^{\infty} \alpha(t,\omega)\widehat{f}(\omega)e^{2\pi i\omega t} d\omega.$$

Our work shows these operators (and their adjoints) can be approximated by Gabor multipliers G_{α} , which are fast to compute.

Phase shift operator: $\alpha(t,\omega) = \exp(-2\pi i t_o \omega)$

Figure: One pulse, and the phase shifted translate.

Time-variant attenuation: $\alpha(t,\omega) = \exp(-\pi t\omega/Q)$

Figure: Two pulses, and their Q-attenuated versions.

Time-variant attenuation: $\alpha(t,\omega) = \exp(-\pi t\omega^2/Q)$

Figure: Two pulses, modified Q-attenuated versions.

Time-variant attenuation: $\alpha = \exp(-\pi t\omega/Q) + \min$ phase

Figure: Two pulses, min phase Q-attenuated versions.

Gabor decon – nonstationary deconvolution

Gabor deconvolution is based on an approximate factorization of signals in the Gabor transform domain.

With source s(t), reflectivity r(t) and recorded seismic data d(t), we have

$$\mathcal{G}d(t,\omega) \approx \widehat{s}(\omega)\alpha(t,\omega)\mathcal{G}r(t,\omega),$$

where

- $\mathcal{G}d(t,\omega)$ is the Gabor transform of the data,
- \hat{s} is the Fourier transform of the source,
- $\alpha(t,\omega)$ is the nonstationary attenuation,
- $\mathcal{G}r(t,\omega)$ is the Gabor transform of the reflectivity.

What's new? A mathematical derivation of this result.

Gabor decon – nonstationary deconvolution

Figure: Time-frequency plots of a seismic signal, source, reflectivity.

Generalized frames

Figure: We localize a signal by multiplying with a window.

Many windows

Figure: Many windows used. Apply FFT, algorithms to these localized versions.

Data flow

Figure: Many windows for data, to process, then recombine.

Generalized frame operators

A generalized frame operator is given by combining these windows and local operators:

$$f\mapsto \sum_k W_k^*A_kW_kf,$$

where the W_k are the windowing, the A_k the local operators.

Theorem

The partition of unity condition $\sum_k W_k^* W_k = 1$ gives boundedness, stability results for the generalized frame operators.

We can partition the signal by time, location, frequency band, or physical parameters such as local velocity.

Theorem

A Gabor multiplier is a special case of the generalized frame operators.

Example: use local operators to propagate waves

Apply local windows to follow the velocity contours. Propagate waves through each approx. velocity field individually.

Figure: EAGE Salt model velocity field, 1500-4500 m/s, simulation.

Figure: EAGE Salt model velocity field, 1500-4500 m/s, simulation.

Figure: EAGE Salt model velocity field, 1500-4500 m/s, simulation.

Figure: EAGE Salt model velocity field, 1500-4500 m/s, simulation.

Figure: EAGE Salt model velocity field, 1500-4500 m/s, simulation.

Figure: EAGE Salt model velocity field, 1500-4500 m/s, simulation.

Summary

- the Gabor transform is a suite of localized Fourier transforms, gives an informative time-frequency display.
- the Gabor multiplier is a suite of localized Fourier multipliers.
- Gabor multipliers model differential operators, including reflection, attenuation, propagation.
- Gabor multipliers are a special case of generalized frame operators, which partition signals in time, frequency, spatial slices.
- Mathematical results developed to analyze, improve numerical methods.

Acknowledgements

Special thanks to:

- Dave Henley, Kevin Hall, and our students
- the industry sponsors of POTSI and CREWES
- funding agencies MITACS, NSERC, PIMS

