Thanks to CGGVeritas for sponsoring last night's icebreaker.

Thanks to Shell, GEDCO, ConocoPhillips, Landmark Graphics, and Tullow Oil for sponsoring tonight's banquet.

The ??? Experiment What field experiment should CREWES do next year? Will your company help? Please give us your opinions on the matter.

The Hussar Experiment An investigation into low-frequency seismic recording September 5-9, 2011

Gary Margrave, Larry Mewhort, Tom Phillips, Mike Hall, Malcolm Bertram, Don Lawton, Kris Innanen, Kevin Hall, and Kevin Bertram.

Outline

Purpose Location Wells and logs **Receivers** Sources Sweeps **Data and Spectra** Conclusions

Purpose

- Push low-frequency acquisition while maintaining high frequencies.
- Investigate processing to preserve and enhance low frequencies.
- Use low frequency information in inversion.

Hussar line on Satellite photo

Sponsor participation at Hussar

- Husky Energy: Managed the survey, negotiated land access, provided well logs, assisted with myriad details.
- **Geokinetics**: Provided 600 3C Vectorseis receivers, field crew for layout, cables, recording system, on site expertise.
- **INOVA**: Mobilized an AHV-IV (model 364) Vibrator from Houston, plus an operator and an onsite scientist (Tom Phillips). Also donated 50 SM24 high-sensitivity geophones.

Reflection Coefficients for 3 Wells

Elevations

Hussar line layout

Shot point or Vib point every 20 m

Line

~1m

R. Line 1: 3C Vectorseis every 10m R. Line 2: 3C 10Hz geophone every 10m R. Line 3: 1C 4.5Hz geophone every 20m R. Line 4: 10 Hz high-sensitivity phones every 20m Broadband seismometers every 200m and spacing

INOVA 364 Low-frequency Vibrator

Both linear and low-dwell sweeps, 1-100Hz, 24 seconds long, were used.

Failing Y2400 Vibrator

Only a low-dwell sweep, 1-100Hz, 24 seconds long, was used.

Dynamite

12 P-P lines 8 P-S lines 10 second records, correlated and uncorrelated

Linear sweep for 364 Vibrator

Low-dwell sweep for 364 Vibrator

Low-dwell sweep for Failing Vibrator

Sweep comparisons (db)

Other Hussar Papers

- Hurrah for Hussar! Comparisons of stacked data: Helen Isaac
- Source and receiver comparisons from Priddis and Hussar: Malcolm Bertram
- Earthquake on the Hussar low-frequency experiment: Kevin Hall
- How low can you go?: Finding low frequencies in various places A Hussar example: Heather Lloyd

Also, please visit the Hussar posters at the CREWES booth

Spectral analysis of raw data

Analysis gate for SP321

SP321, 10Hz, Reflection gate 1

Spectral analysis, SP321, 4.5Hz (Sunfull) 3.5 second gate

Spectral analysis, SP321, 4.5Hz (Sunfull) 7 second gate

Spectral analysis, SP321, Vectorseis(acc)

Spectral analysis, SP321, Vectorseis(vel)

Spectral analysis, SP321, 4.5Hz (Sunfull)

Spectral analysis, SP321, 4.5Hz (Sunfull) with geophone correction

Spectral analysis, SP321, SM7 (10Hz)

Spectral analysis, SP321, SM7 (10Hz) with geophone correction

Spectral analysis, SP321, Dynamite, all receivers

Spectral analysis, SP321, 364-Low, all receivers

Spectral analysis SP321, 364-Linear, all receivers

Spectral analysis SP321, Failing, all receivers

Spectral analysis SP321, Dynamite, all receivers, geophones corrected

Spectral analysis SP321, 364-Low, all receivers, geophones corrected

Spectral analysis Comparison of Vectorseis to Corrected Geophones

Conclusions

- CREWES has acquired a very interesting low-frequency dataset.
- Dynamite produced the strongest low-frequency content.
- INOVA 364 vibrator did very well with both linear and lowdwell sweeps. Conventional vibe with low-dwell is an option.
- Vectorseis records down to very low frequencies but instrument noise seems a problem below 3Hz.
- 4.5Hz and 10Hz geophones show the expected roll-off below resonance.
- Geophone correction filters seem very effective in restoring low frequency content.
- Dataset is available to all sponsors beginning in Jan. 2012.

Acknowledgements

- Husky Energy provided land access, well access, and survey management.
- Geokinetics provided Vectorseis receivers, recording system, and field crew.
- INOVA provided the INOVA AHV-IV (model 364) and donated the 50 SM24 receivers.
- Nanometrics provided 15 Trillium broadband seismometers.
- All CREWES sponsors and NSERC provided financial support.

