Towards field evidence for anelastic
and dispersive AVF reflections
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Amplitude variations with frequency

 Frequency dependent reflections in seismic

field data have been associated with highly
attaniiative tarcetc (ODdebeatii et al 2006)

UAOGLV T TAUULI Y W VU4I \—\-J VM\—”\-—U\-M w S WUie l_vvv

* Geologically, this may occur for a gas
saturated reservoir

 AVF inversion presents an avenue of
determining subsurface rock
properties/reservoir characterization
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Anelastic reflectivity

Application of spectral decomposition to detection

of dispersion anomalies associated with gas saturation ° F re q uen Cy d e p en d en t

Ertewa Ooeazary, Leeds University, UK.
e Zrang, Mark Criarnan, Enmu L, and Xiaws-Yans Li, Edinburgh Anisofropy Project, UK.

For mary e gopryids o aempied o ol rarararars reflection coefficient
associated with a gas

saturated target
(Odebeatu et al. 2006)

 QOur goalis to develop
the means to extract
target information from
this type of variability

sibility of making further progress in this direction.

It is certainly the case thata wide range of evidence sug-

ﬁ:sbs that hydrocarbon zones are associated with abnormally

igh values of seismic attenuation and, in view of the
Kramers-Kronig relations, we might expect that this atten-
uation would be associated with significant velocity dis-
persion. Consideration of the “drift” between velocities
measured in VSP and log data over thick sections of the
earth’s crust has suggested that velocity dispersion in seis-
mic wave propagation is generally small, but this still leaves
the possibility that certain zones, such as hydrocarbon reser-
voirs, exhibit significant magnitudes of velocity dispersion
and attenuation. Consideration of indirect dispersion mea-
surements, particularly the frequency dependence of shear-
wave splitﬁn%_uind other anisotropic attributes, further
suggests that this is the case.

It can be difficult to explain the link between fluid satu-
ration and attenuation using poroelastic models; straightfor-
ward application of the Biot tions will lead to attenuation
values which are far too small. A recent paper (Chapman et
al., 2005) showed how to implement ideas from squirt-flow
theory to model hydrocarbon-related attenuation anomalies.
Abnormally high attenuation can be produced as result of gas
saturation, but this attenuation must be accompanied by sig-
nificant velocity dispersion in the reservoir layer. This leads
naturally to the view of the reservoir as a “dispersion anom-
aly" and under these circumstances the reflection coefficient
becomes stron uency dependent. Synthetic modelin,
suggests that ﬂ Ef";eqct is fag'leepr impm‘ta.ﬁt and would usug—-
ally dominate the traditional effect of attenuation thought of
as a continuous and cumulative loss of energy during prop-
agation. The nature of the frequency response depends
strongly on the AVO behavior at an interface.

The effect of the frequency-dependent reflection coefficient
ol oo n s T s moden L . oy et s o o o 5 el %
instantaneous spectral analysis techniques the ideal tool for . e hioher freaues :
detecting such vzegaﬁms. St);uh an aDD‘l:loach has a number of canniot be observed on the higher frequency sections.
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Anelastic reflection coefficients

e Reflection Coefficient (R) in terms of vertical wavenumber

Normal incidence — R = k: + k:i (1)

Use nearly constant Q model from Aki and Richards (2002)
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=21, Fl@ (2)
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F(w)=§—;|og<%r)

e Substitute (2)into (1) To obtain expression for anelastic
Reflection coefficients.

where

(@) (@)
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Study area, data and objective

e
* Ross Lake heavy oil field is PR T
located in South West T R
Saskatchewan P \ -
e Owned and operated by Husky 1w T
Energy B
.. 2 | B §
 Thereservoiris a channel e
sand, of Cretaceous age, inthe |§| | 5
Cantaur Formation of the i
Mannville group (Zhang, 2010) —*
e A number of VSP surveys : ; D
performed including a zero- s

M GAS

SANDSTOMNE CARBONATE {r GAS - UNGEMFOEMITIES
— . & oL
Offs et VS P FHALE EVAFURITE A MINE

From Saskatchewan Industry and
CREWE’S Resources, 2006 /
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Objective:
and analyse for AVF signature, then compare with a control
reflection from the Lea Park/Milk River interface
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Zero- offset vertlcal component VSP
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Methodology

Lira’s Method — elastic case

F?] :(élﬁ(zl_zo)'rm. . .ék‘n—l(ZZw_zn—l_z)) R1

R= (T01T12' ' 'T(n—2)(n—1)—l R

[ = —

D= ( é.l%(zl_ZO)TOl' : é.kn—1(2—2n—1) )

D|= [T01T12 - Tn—2)(n-1) }

P
Peor = ‘|Dn|‘ ~ Ry

For small Zn-2
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Methodology anelastic case

SOUICS

R bl )

Plugging back into the expressions for Pn
and D we obtain

‘ ‘ —a)(zn—z)
P X e Cn—lQn—l
We see that for small Zn-Z we have

Ra =R

Lira, J. E., Weglein, A. B., Bird, C. W. and Innanen, K.
A., 2011, Determination of reflection coefficients by
comparison of direct and reflected VSP events:
CREWES Annual Report, 23, 1-13.
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Extraction of spectra

Fast S-transform

synthet|c trace with absorptlve reflection

e We have a calibrated, fast S- o02”
transform (Brown et al., °”‘“ WM W

et

l 2 1.4 1.6
absorptlve reﬂectlon only

2010) which testing

indicates offers high fidelity " |

estimates of the local ° I
-0.02 -
spectra of seismic events 0 02 04 06 08 1 12 14 16
dcon spectrum(red) and analytic spectrum
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Extraction of spectra
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Q compensation

 |n order to use Lira’s method
recall that

e Since Zn-Z is not small so
division of primary by direct
will not yeld R. However, using
average values of velocity and
Q we can calculate R

(z,~2

\P ‘ (an )

Rn X @ CaveYave
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Milk Rlver/Lea Park
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Conclusions

e We applied a method developed by Lira et al.,
(2011) for estimating the frequency dependent
reflection coefficient by comparing the direct and
reflected VSP events

e The method was applied to an absorptive
reflection in the Mannville and analyzed for an
AVF signature

* As a control, the method was applied to a
reflection (Lea Park/Milk River) not associated
with a contrast in Q
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Conclusions

e |t was found that the control reflection
coefficient had an AVF signature as well

* This VSP example is not providing a good
control. Therefore it is hard to know if the
apparent AVF signature in the Mannville is real
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Future Work

e Look for a better control
and target reflectors

e Study the potential for
wavefield separation
techniques which do not
dominate the spectra of our
events

 Merge with existing AVF
inversion methods of Bird
thesis research
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