REFLECTIVITY MODELING BY FINITE DIFFERENCE

P.F. Daley (П.Ф. Далий) and G.F. Margrave

Basic Equations - the Acoustic Wave Problem

- Standard reflectivity method (e.g. Müller, 1985) uses summation over the lateral wavenumber and plane-wave domain propagator matrices for vertical propagation.
- The finite difference method (Mikhailenko, 1970-present) uses the same summation over the lateral wavenumber but finite difference in z and t.
- A major effect of this is the run time is independent of the number of "layers"
- Also, the finite difference code cannot easily suppress the surface effects.

Basic Equations – the Acoustic Wave Problem (1). $\rho \alpha^2 \nabla^2 \psi(r, z, t) - \rho \frac{\partial^2 \psi}{\partial t^2} - b \frac{\partial \psi}{\partial t} = \frac{\delta(r) \delta(z - z_s)}{2\pi r} f(t)$

Finite Hankel Transform and Inverse

$$\psi(k_j, z, t) = \int_0^u \psi(r, z, t) J_1(k_j r) r dr$$
$$\psi(r, z, t) = \frac{2}{a^2} \sum_{j=0}^\infty \frac{\psi(k_j, z, t) J_1(k_j r)}{\left(J_0(k_j r)\right)^2}$$

 $J_1(k_j a) = 0 \leftarrow \text{trancendental equation}$ infinite number of roots

(2). $\rho \alpha^{2} \frac{\partial^{2} \psi(r, z, t)}{\partial z^{2}} - \rho \alpha^{2} k_{j}^{2} \psi(r, z, t) - \rho \frac{\partial^{2} \psi(r, z, t)}{\partial t^{2}} - b \frac{\partial \psi(r, z, t)}{\partial t} = \frac{\delta(z - z_{s})}{4\pi} f(t)$

f(t) – band limited source wavelet allows for a finite truncation of the infinite inverse series.

b is an attenuation factor proportional to Q^{-1}

Required that some form of finite difference analogue be constructed for equation (2). $O(\Delta z^2, \Delta t^2)$ is sufficiently accurate.

Gabor Wavelet and Spectrum 30Hz $f(t) = \cos \omega_0 t \exp[-(\omega_0 t/\gamma)]$

Velocity (Density) – Depth Model

Isotropic Vertical Component

Isotropic Radial Component

Velocity (Density) – Depth Model Zero-offset VSP

Vertical Component (VSP)

Source and receivers in bore hole.

TI Depth Model

(Function Exists for α_0 , β_0 , ϵ , $\delta \rightarrow C_{ij}$)

TI Vertical Component

TI Radial Component

1/Q versus Depth

TI Vertical Component (with Q)

TI Radial Component (with Q)

Smoothed Logs

Modify Logs for Smoothing

Vertical – Smoothing High

Vertical - Smoothing Moderate

Vertical – Smoothing Low

Horizontal – Smoothing High

Horizontal – Smoothing Moderate

Horizontal – Smoothing Low

Conclusions

- Same cost in CPU time as the true Reflectivity Method.
- Advantage of having the elastic parameters varying arbitrarily with depth.
- Orthorhombic and monoclinic anisotropy codes are in development.
- The upgrade to lateral variation of elastic parameters has been investigated (Mikhailenko et al.).
- The generalization to true 3D has been developed by others (Mikhailenko et al.).

Acknowledgements

The support of the sponsors of CREWES is duly noted. The first author also receives assistance from NSERC through Operating and Discovery Grants held by Professors E.S. Krebes (7991-2006), L.R. Lines (216825-2008) and G. F. Margrave (217032-2008).