Hydraulic fracturing as a global cascade in networked systems

David Cho and Gary F. Margrave

Empirical observations

From Maxwell et al., 2011

- **↑** Brittleness **↓** ISIP
- **1** Brittleness **1** Fracture length
- ↑ Brittleness ↓ Moment density

Outline

- Introduction to networks
- Model specification
 - Spreading model
 - Rock model
- Results

Networks

- Collection of points or nodes, connected by lines or edges
 - Purely theoretical objects
 - Useful representation
 - Complex systems
 - Systems with interacting components

Motivating ideas

- In networked systems, the interactions between component parts are just as important as the parts themselves in defining the properties of the system (Motter and Albert, 2012)
 - Introduce non-linearities
- Macroscopic phenomena do not depend on the microscopic details of the process
 - Effective field theories
 - Applicable at some chosen length scale and ignores the substructure and degrees of freedom at shorter distances
 - Discard the complex fluid flow and fracture mechanics in modeling the dynamic response of hydraulic fracturing

Spreading model (Watts, 2002)

- Binary decision process
 - Each agent decides between two alternative actions
 - Decisions are based solely on the actions of other members in the population

What movie should I watch?

Model specification

- Model parameters for each agent
 - Two possible states of 0 or 1
 - Threshold defined on the unit interval
 - Degree (range of connections)
- Dynamic modeling
 - Initiate with seed nodes
 - An individual agent observes the states of its connected neighbors
 - Adopts state 1 if threshold is reached
 - Remains in state 0 if threshold is not reached
 - Iterate

Rock network

Threshold

 Failure occurs when Mohr circle touches failure envelope

$$\sigma_H = \sigma_h = \frac{\upsilon}{1 - \upsilon} \sigma_V$$

Degree

- Consider how information is transferred in an elastic solid
 - Upon the application of a stress, particle motion is excited through strain waves and propagates throughout the medium
 - Information transfer regarding the state of stress
 - Wave mechanics

Wave amplitude

Rock model

- Hashin-Shtrikman (1963) to calculate effective elastic properties of a two phase material
 - Quartz and clay
 - Brittleness correlated to volume of quartz
 - Avoid ill-defined concept of brittleness

Effective medium properties

2D simulations

Results

Fracture growth rate

Spatial energy output

Conclusions

- Presented a model for hydraulic fracture propagation
- Caution: Simplifications result in a lack of rigor in understanding the phenomenon at a fundamental level
- Provides an alternative view of the problem

Acknowledgements

- Jeff Grossman for his insights
- Bill Goodway and Marco Perez for discussions
- Sponsors of the CREWES project