Using impedance inversion to investigate the low frequencies present in the Hussar data

Heather J.E. Lloyd and Gary F. Margrave

Outline

- Introduction to Reflectivity and Impedance
- BLIMP Method
- Well Tying
- Impedance Inversions
- Low-Frequency Investigation
- Conclusions

INTRODUCTION TO IMPEDANCE AND REFLECTIVITY

Relationship between I & r

$$r_1 = \frac{I_2 - I_1}{I_2 + I_1}, \quad where$$

$$I_1 = \rho_1 v_1$$
, and, $I_2 = \rho_2 v_2$

Recursion Formula

$$I_{j} = I_{0}e^{2\sum_{k=0}^{J}r_{k}}$$

Depth Inversion

Bandlimited Time Inversion

Properties of Reflectivity and Impedance

Reflectivity

- Estimated from seismic or well log data
- Limited low frequencies mathematically
- Missing low frequencies are not as critical for the character of the curve.

Impedance

- Intrinsic property of the rock layers
- Contains more resolution and detail than seismic
- Missing low frequencies cause significant errors

BLIMP METHOD

(Ferguson and Margrave, 1996) and (Lindseth, 1979)

Borrow low-frequencies using BLIMP

BLIMP Steps 1 & 2

Step 1: Remove the linear trend from the impedance log

BLIMP Steps 3 & 4

Step 3: Compute the Fourier transform of the impedances

Step 4: Determine a scalar using the mean power of the impedance log spectra and apply it

BLIMP Steps 5 & 6

Step 5: Apply filters to the impedance log and inverted reflectivity spectra

Step 6: Combine the filtered impedance log and inverted reflectivity spectra

BLIMP Step 7

Step 7: Inverse Fourier transform the solution and add the linear trend

Comparison of Inversion Methods

	Low Frequency	Seismic Frequency Band	High Frequency
Band Limited Inversion	Logs	Seismic	None
Sparse Spike Inversion	L1 Minimization	Seismic	L1 Minimization
Model Based Inversion	Logs	Seismic	Model Estimation

BLIMP Inversion Problems

- Sensitive to low-frequency cut-off
- Best applied to one trace or a model without structure
- Relies heavily on log information

WELL TYING

Well Tying Procedure

- Applied Overburden and Underburden to Well logs
- Time-Variant Balanced Seismic
- Estimated Wavelet
- Modified sonic logs by matching events with seismic
- Final Well Tie

Well Logs in Depth

Burdened Well Logs

Starting Migrated Stacked Seismic Section

Seismic Balanced by Matching Well Amplitudes

Wavelet

Modify Sonic Logs

Seismic & Well Ties

Average Trace and Synthetic

IMPEDANCE INVERSIONS

Low Frequency Source: Well 12-27

Low Frequency Source: Well 14-27

Low Frequency Source: Well 14-35

Low Frequency Source: Average Well

Low Frequency Source: Well 12-27

Low Frequency Source: Well 14-27

Low Frequency Source: Well 14-35

Low Frequency Source: Average Well

LOW-FREQUENCY INVESTIGATION

0.5 Hz Cut-off

1.5 Hz Cut-off

2.5 Hz Cut-off

Conclusions

- Definitive evidence for signal in the Hussar data below 2 Hz
- Time-variant balancing was necessary for a proper inversion
- Well tying is also necessary for a more accurate inversion.
 - New tools are available for this process

Acknowledgements

- CREWES Sponsors
- CREWES Staff
- CREWES Students
- Husky, INOVA, Geokinetics
- Roy Lindseth
- Laura Baird
- Carbon Management Canada

