

Why seismic-to-well ties are difficult

Gary F. Margrave

It's Q's Fault

Gary F. Margrave

Outline

- Well tying: standard techniques
- The easy case that is mostly irrelevant.
- The nonstationary trace model
- Physical effects of attenuation (Q)
- Nonstationary seismogram from well logs
- Failure of stationary deconvolution
- Nonstationary deconvolution: Inverse Q filters and Gabor deconvolution
- Inclusion of noise
- Conclusions

Well Tying

We seek a minimal sequence of adjustments that establish an "acceptable" match.

- depth (m) Wiener match filters are "too much"
 - Adjustments should have a physical motivation
 - Common steps are: timing adjustments, amplitude spectral shaping, phase rotations

Wavelet Estimation: Amplitude spectrum Estimate amplitude spectrum of wavelet by smoothing the spectrum of the seismic data.

Wavelet Estimation: phase spectrum

Assume a simple phase: constant phase, minimum phase, or time-variant constant phase.

Example: Constant phase scan: $err(\theta) = \sum (s_0 - phsrot(s_1, \theta))^2$

The Easy, Nonphysical Case

The easy but nonphysical case

Noise-free convolutional seismogram with a minimum phase wavelet and white reflectivity

$s(t) = w(t) \Box r(t)$

The deconvolved seismogram will tie the reflectivity almost exactly.

The easy but nonphysical case

What's wrong with this? $s(t) = w(t) \Box r(t)$ *A: Almost everything!*

- Real reflectivity is not white
- The wavelet, while possibly minimum phase, evolves continuously
- Convolution cannot be stationary
- Noise is fundamentally important

Nonstationary trace model (CREWES q_tools)

Nonstationary Convolution Model Better trace model

 $s = W_0 W_Q r$

Nonstationary Convolution Model Better trace model

Nonstationary Convolution Model Better trace model

Factoring W₀W_Q

Nonstationary Q matrix

 W_Q

Note: $W_0 W_Q - W_Q W_0 \neq 0$ but is usually very small

Physical Effects of Anelastic Attenuation (CREWES q_tools)

Wavelet evolution

1D attenuating earth

Impulse in

Blob out

Wavelet evolution and drift Frequency dependence of phase velocity leads to "drift"

Wavelet evolution and drift Frequency dependence of phase velocity leads to "drift"

Nonstationary seismogram from well logs

Hussar 12-27 Logs

Synthetic seismograms from Hussar 12-27 Logs, logging depths doubled

Failure of Stationary Deconvolution

Stationary decon of stationary seismogram the unphysical case

Stationary decon of nonstationary seismogram

Nonstationary catastrophe

Understanding the Nonstationary catastrophe

Nonstationary catastrophe Can spectral shaping help?

Impose the amplitude spectrum from the ideal case

Nonstationary catastrophe Can phase rotations help? Find best constant phase rotation in local Gabor windows (drift correction should be done first)

Nonstationary catastrophe Can AGC help?

Global: max corr=0.22737, lag=-0.9 samples Local: max corr=0.29345, lag=-4 samples Early: max corr=0.55126, lag=-0.8 samples Late: max corr=0.17597, lag=-11.2 samples

Stationary deconvolution Nonstationary band-aid

Phase error analysis time-variant constant phase estimates

Inverse Q filter and Gabor deconvolution

Inverse Q filter renders the nonstationary trace stationary

Inverse Q filter then Wiener decon avoiding the nonstationary catastrophe

Gabor decon avoiding the nonstationary catastrophe

Phase rotation analysis Inverse Q->deconw compared to Gabor decon

Inclusion of noise

Noisy seismograms S2N=2 in design window of nonstationary trace Identical noise added to both seismograms

Inverse Q filter on noisy data

Inverse Q filter then Wiener decon on noisy data

Gabor deconvolution on noisy data

Phase rotation analysis Inverse Q->deconw compared to Gabor decon on noisy data

Conclusions

- Anelastic attenuation, which is always present, ensures that the convolutional model is approximate at best.
- Real seismic data does not have a single "wavelet" but rather an evolving wavelet determine by the Q structure.
- The nonstationary convolutional model captures the firstorder effects of the evolving wavelet.
- Applying stationary deconvolution to a nonstationary seismogram is reasonable in the design widow but produces severe distortions elsewhere.
- Standard well-tying procedures of wavelet shaping and phase rotation have limited success outside the design window.
- Nonstationary deconvolution processes are required for better results but have their own problems.
- Noise affects the nonstationary trace severely and ensures that the signal band is time-variant.

Acknowledgements

My thanks to all CREWES sponsors for supporting this research. Thanks also the NSERC, CMC, and the UofC for additional support.

Well versus synthetic reflectivities

Well versus synthetic reflectivities

Wavelet Estimation: Constant phase rotations

 $W_0 W_Q \sim W_Q W_0$ Almost commutative

Stationary decon of stationary seismogram for reference

And the state of the

Stationary decon of stationary seismogram for reference

Stationary decon of stationary seismogram for reference

