

Efficient Pseudo Gauss-Newton FWI in the Time-Ray Parameter [$\tau-\mathbf{p}$] Domain

Wenyong Pan, Kristopher A. Innanen, Gary F. Margrave

CREWES, University of Calgary

Outline

Introduction

- General Principle of FWI
- Why FWI fails in industry practice ?

Theory and methods

- ✤ Gradient
- Approximate Hessian
- Pseudo-Hessian
- Phase Encoded Hessian
- Multiscale Approach
- Numerical Example
- Conclusions

General Principle of FWI

$$\phi\left(s_{0}^{(n)}(\mathbf{r})\right) = \frac{1}{2} \int d\omega \left(\sum_{\mathbf{r}_{s}} \sum_{\mathbf{r}_{g}} \|\delta P\left(\mathbf{r}_{g}, \mathbf{r}_{s}, \omega | s_{0}^{(n)}(\mathbf{r})\right) \|_{2}\right)$$

Least-squares misfit function for full waveform inversion

General Principle of FWI

$$s^{(n)}(\mathbf{r}) = s_0^{(n)}(\mathbf{r}) + \mu^{(n)}\delta s_0^{(n)}(\mathbf{r})$$

The model can updated iteratively

$$\delta s_0^{(n)} = -\int d\mathbf{r}' H^{(n)-}(\mathbf{r},\mathbf{r}')g^{(n)}(\mathbf{r})$$

The model perturbation can be constructed by gradient and inverse Hessian

Why FWI fails in industry practice?

Extensively computational burden

□ Slow convergence rate

Cycle skipping problem

Strategies

Source encoding method

□ Hessian approximations

Multiscale approach

Gradient

$$g^{(n)}(\mathbf{r}) = -\sum_{\mathbf{r}_s} \sum_{\mathbf{r}_g} \int d\omega \Re \left(\frac{\delta G\left(\mathbf{r}_g, \mathbf{r}_s, \omega | s_0^{(n)}\right)}{\delta s_0^{(n)}(\mathbf{r})} \delta P^*\left(\mathbf{r}_g, \mathbf{r}_s, \omega | s_0^{(n)}\right) \right)$$

Gradient

$$g^{(n)}(\mathbf{r}) = \sum_{\mathbf{r}_s} \sum_{\mathbf{r}_g} \int d\omega \Re \left(\omega^2 \mathcal{F}_s(\omega) G(\mathbf{r}, \mathbf{r}_s, \omega) G(\mathbf{r}_g, \mathbf{r}, \omega) \delta P^* \left(\mathbf{r}_g, \mathbf{r}_s, \omega | s_0^{(n)} \right) \right)$$

Gradient can be constructed using adjoint state method

Gradient

$$g^{(n)}(\mathbf{r}) = -\sum_{\mathbf{r}_s} \sum_{\mathbf{r}_g} \int d\omega \Re \left(\frac{\delta G\left(\mathbf{r}_g, \mathbf{r}_s, \omega | s_0^{(n)}\right)}{\delta s_0^{(n)}(\mathbf{r})} \delta P^*\left(\mathbf{r}_g, \mathbf{r}_s, \omega | s_0^{(n)}\right) \right)$$

Gradient

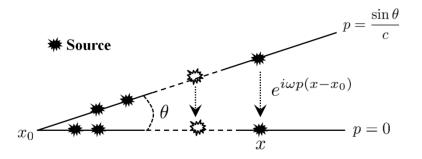
$$g^{(n)}(\mathbf{r}) = \sum_{\mathbf{r}_s} \sum_{\mathbf{r}_g} \int d\omega \Re \left(\omega^2 \mathcal{F}_s(\omega) G(\mathbf{r}, \mathbf{r}_s, \omega) G(\mathbf{r}_g, \mathbf{r}, \omega) \delta P^* \left(\mathbf{r}_g, \mathbf{r}_s, \omega | s_0^{(n)} \right) \right)$$

RTM image based on cross-correlation imaging condition

Phase Encoded Gradient

$$\tilde{\mathbf{d}}\left(\mathbf{r}_{g},\mathbf{r}_{s},p,\omega\right) = \int \mathbf{d}\left(\mathbf{r}_{g},\mathbf{r}_{s},\omega\right) e^{i\omega p(x_{s}-x_{0})} d\mathbf{r}_{s}$$

The construction of the encoded wavefields can be interpreted au - p as transform.



Phase Encoded Gradient

$$\tilde{g}\left(\mathbf{r},\mathbf{p}^{g},\omega\right) = \sum_{\omega} \sum_{\mathbf{r}_{s}} \sum_{\mathbf{r}_{g}} \sum_{i=1}^{N_{p}^{g}} \Re\left\{\omega^{2}\mathcal{F}(\omega)G\left(\mathbf{r},\mathbf{r}_{s},\omega\right)G^{*}\left(\mathbf{r},\mathbf{r}_{g},\omega\right)e^{i\omega p_{i}^{g}\left(x_{s}-x_{g}\right)}\right\}$$

Linear phase encoded gradient

where p_s is the ray-parameter, x_s and x_g are the sources and receivers coordinates.

Linear phase encoding strategy

- □ Slant stacking over a set of ray parameters can disperse the crosstalk noise.
- **Different** ray parameters can balance the gradient and update.

The Role of Hessian in Least-Squares Inverse Problem

□ Improve the convergence rate

The Role of Hessian in Least-Squares Inverse Problem

Hessian Matrix Nonstationary Deconvolution Operator

- □ Improve the convergence rate
- Compensate the geometrical spreading effects and balance the amplitude
 Suppress the multiple scattering effects and improve the resolution

Approximate Hessian

$$H^{(n)}(\mathbf{r}',\mathbf{r}) = H_1^{(n)} + H_2^{(n)}$$

Full Hessian

$$H_a^{(n)} = H_2^{(n)} \simeq \sum_{\mathbf{r}_s, \mathbf{r}_g} \int d\omega \Re \left\{ \omega^4 G \left(\mathbf{r}_g, \mathbf{r}', \omega | s_0^{(n)} \right) G \left(\mathbf{r}', \mathbf{r}_s, \omega | s_0^{(n)} \right) G^* \left(\mathbf{r}_g, \mathbf{r}'', \omega | s_0^{(n)} \right) G^* \left(\mathbf{r}'', \mathbf{r}_s, \omega | s_0^{(n)} \right) \right\}$$
Approximate Hessian in Gauss-Newton Method by Gary and Kris (2011)

$$H_a^{(n)} \simeq \mathbf{Diag}\left(H_a^{(n)}\right)$$

Diagonal part of the approximate Hessian

Pseudo-Hessian

$$f_{virtual} = -\omega^2 \mathcal{F}_s(\omega) G\left(\mathbf{r}, \mathbf{r}_s, \omega | s_0^{(n)}(\mathbf{r})\right)$$

Virtual Source

$$\begin{split} H_{pseudo}^{(n)} &= f_{virtual} f_{virtual}^* = \sum_{\mathbf{r}_s} \int d\omega \Re\{\omega^4 | \mathcal{F}_s(\omega)|^2 G(\mathbf{r}', \mathbf{r}'_s, \omega) G^*(\mathbf{r}'', \mathbf{r}_s, \omega)\} \\ & \mathbf{Pseudo-Hessian} \end{split}$$

$$I_{dec} = \frac{\sum_{\mathbf{r}_s, \mathbf{r}_g} \int d\omega \Re \left\{ \omega^2 \mathcal{F}_s(\omega) G(\mathbf{r}, \mathbf{r}_s, \omega) G(\mathbf{r}_g, \mathbf{r}, \omega) \delta P^*\left(\mathbf{r}_g, \mathbf{r}_s, \omega\right) \right\}}{\sum_{\mathbf{r}_s} \int d\omega \omega^4 \Re \left\{ |\mathcal{F}_s(\omega)|^2 G\left(\mathbf{r}', \mathbf{r}_s, \omega\right) G^*\left(\mathbf{r}', \mathbf{r}_s, \omega\right) \right\} + \lambda I$$

Deconvolution imaging condition

Phase Encoded Hessian

$$\begin{split} H_{encoded} &= \sum_{\mathbf{r}_s} \int d\omega \Re \left\{ \omega^4 G(\mathbf{r}', \mathbf{r}_s, \omega) G^*(\mathbf{r}'', \mathbf{r}_s, \omega) \right\} \\ &\times \sum_{\mathbf{p}_g} \int d\omega \Re \left\{ G(\mathbf{r}'', \mathbf{r}'_g, \omega) e^{i\omega p_g(x'_g - x_{initial})} G^*(\mathbf{r}'', \mathbf{r}_g, \omega) e^{-i\omega p_g(x_g - x_{initial})} \right\} \end{split}$$

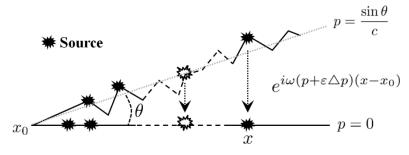
Receiver-side linear phase encoded Hessian

$$H_{encoded} = H_{exact} + H_{crosstalk}$$

By Tang (2009)

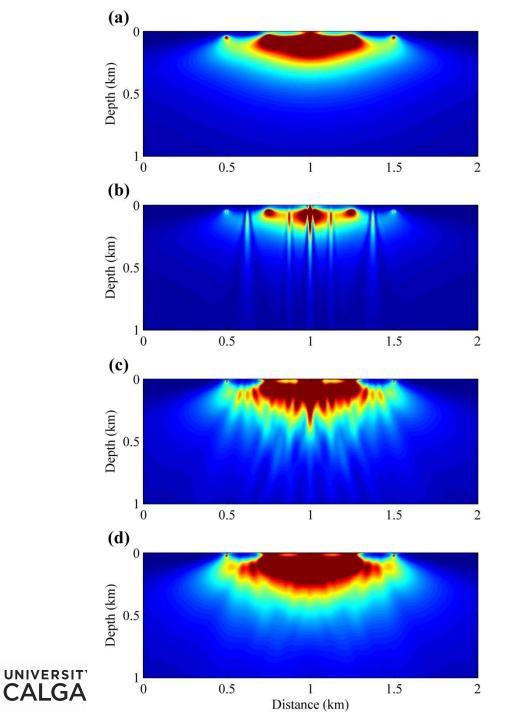
$$H_{encoded} = H_{exact}, \mathbf{p}_g \in (-\infty, +\infty)$$

By Tao and Sen (2013)

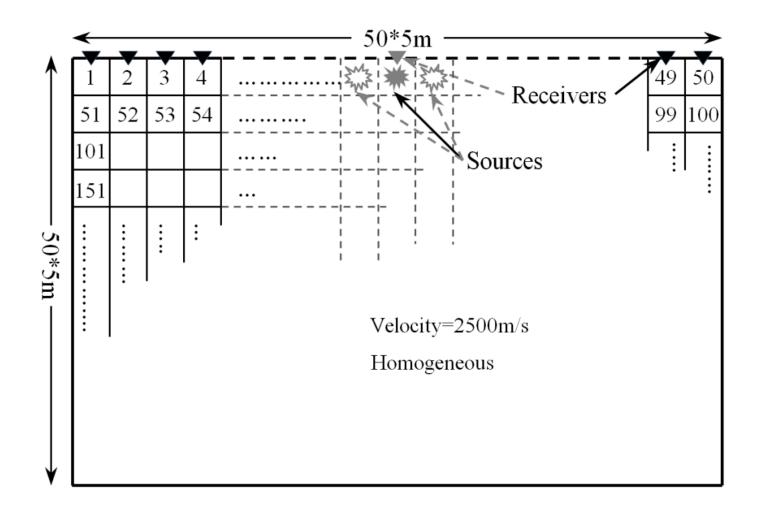


Phase Encoded Hessian

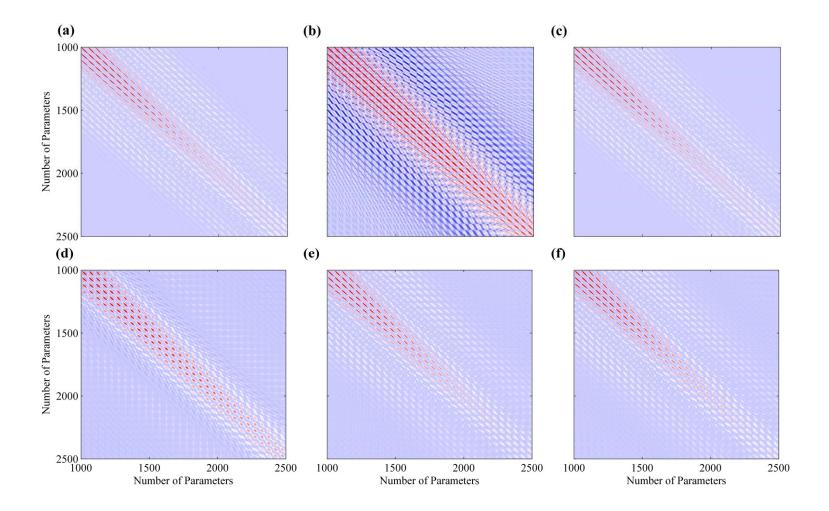
$$\begin{split} H_{chirp} &= \sum_{\mathbf{r}_s} \int d\omega \Re \left\{ \omega^4 G(\mathbf{r}', \mathbf{r}_s, \omega) G^*(\mathbf{r}', \mathbf{r}_s, \omega) \right\} \\ &\times \sum_{\mathbf{p}_g} \int d\omega \Re \left\{ G(\mathbf{r}'', \mathbf{r}'_g, \omega) G^*(\mathbf{r}'', \mathbf{r}_g, \omega) e^{i\omega(p_g + \varepsilon \Delta p)(x'_g - x_g)} \right\} \end{split}$$


Chirp phase encoded Hessian

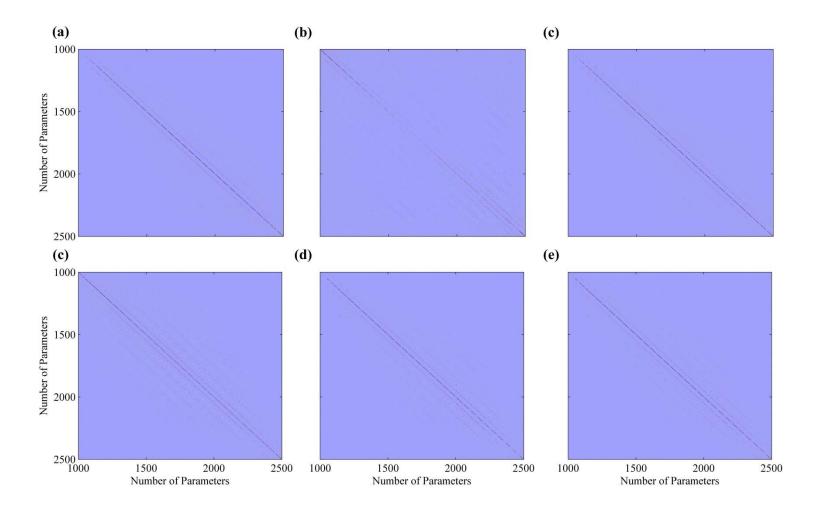
Chirp phase encoding strategy



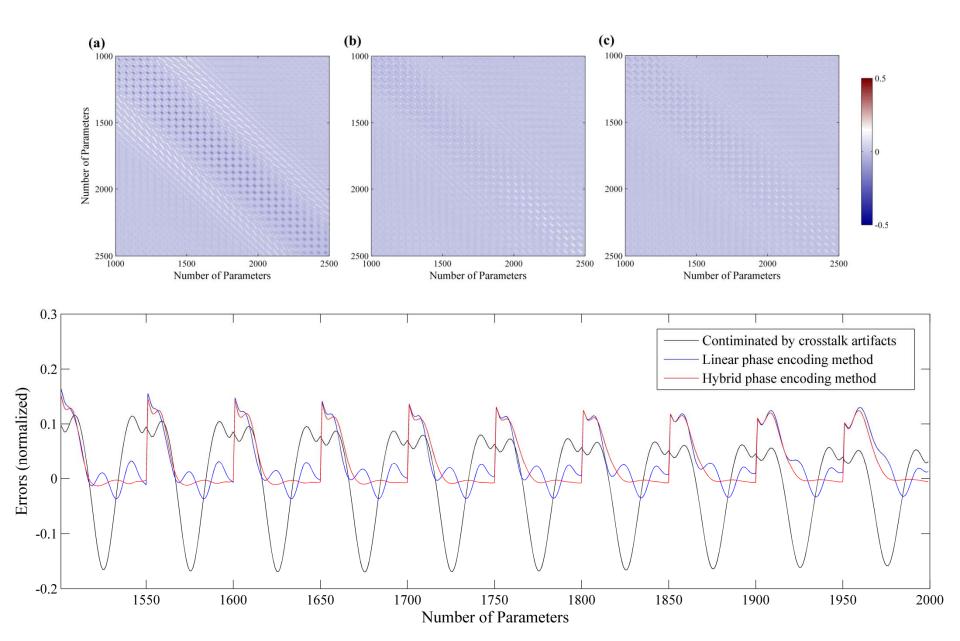
NSERC CRSNG

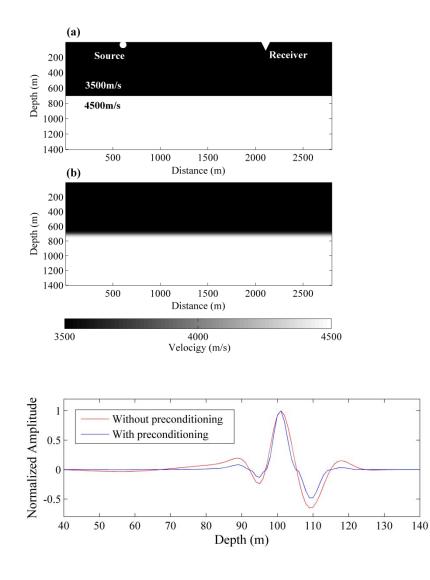


Hessian Approximations Comparison

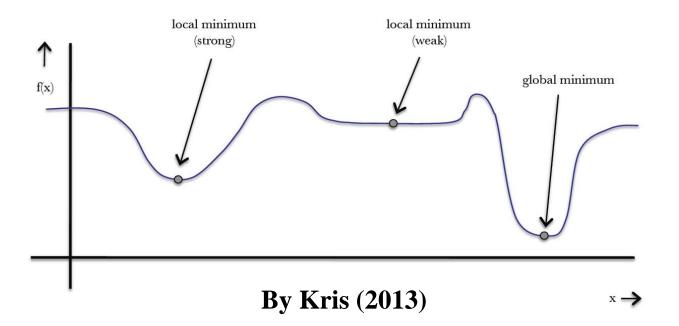


Inverse Hessian Comparison





Error Comparison


Gradient Contribution Analysis

Multiscale Approach

Multiscale Approach

Low frequency is responsible to catch the low wavenumber component
 High frequency is responsible to add detailed information

$$s\left(\mathbf{r}\right) = s\left(\mathbf{r}\right)^{low} + s\left(\mathbf{r}\right)^{high}$$

Pseudo Gauss-Newton Step

To reduce the computational cost further, we proposed to use one ray parameter in one FWI iteration but change the ray parameter regularly for different iterations.

$$\delta s\left(\mathbf{r}\right) = \frac{\int d\omega \Re\left\{\omega^{2} \mathcal{F}_{s}(\omega) G(\mathbf{r}, \mathbf{r}_{s}, \omega) G(\mathbf{r}_{g}, \mathbf{r}, \omega) e^{i\omega p_{s}(x_{s}^{\prime} - x_{s})} \delta P^{*}\right\}}{\mathbf{Diag}\left(H_{phase_encoded}\right) + \lambda I}$$

Pseudo Code for PGN method

BEGIN $\leftarrow s_0$, initial model;

WHILE $\varepsilon \leq \varepsilon_{min}$ or $n \leq n_{max}$

Identify the ray parameter $p_s^{(n)}$

Identify the frequency band $f^{(n)} = f_0 \to f_{max}$, $f_{interval}$, every k iterations

Generate the data residual δP and apply low-pass filtering $\delta \tilde{P} = \text{low}_{\text{pass}} \left(\delta P, f^{(n)}\right)$ Generate the linear phase encoded gradient $g^{(n)}\left(p_s^{(n)}\right)$

FOR i = 1 to $\mathbf{p}_s^H, \mathbf{p}_r^H$, every 1 or *m* iterations

Construct the diagonal part of the hybrid phase encoded Hessian $diag\left(H_{en_a}^{(n)}\right)$

END FOR

Calculate the step length $\mu^{(n)}$ using the line search method update the velocity model:

$$s^{(n+1)}(\mathbf{r}) = s^{(n)}(\mathbf{r}) - \mu^{(n)} \left\{ diag \left(H_{en_a}^{(n)} \right) + \lambda I \right\}^{-1} g^{(n)} \left(p_s^{(n)} \right)$$

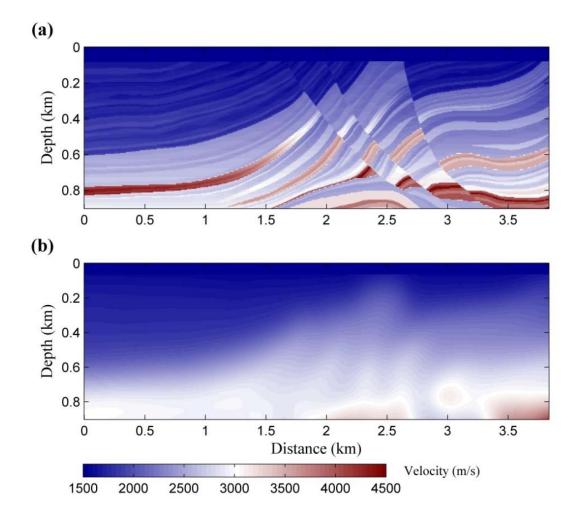
Calculate the relative least-squares error:

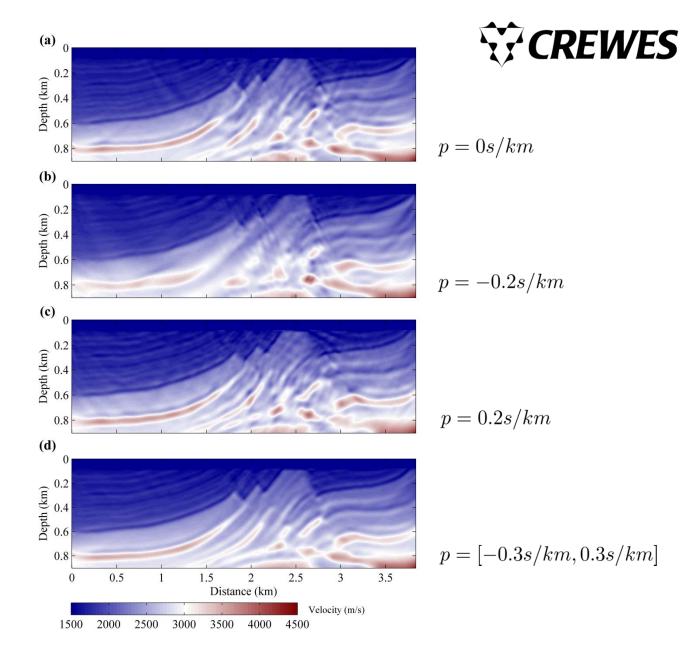
$$\varepsilon = \frac{\|s^{(n)}(\mathbf{r}) - s^{true}(\mathbf{r})\|_2}{\|s^{true}(\mathbf{r})\|_2}$$

END WHILE

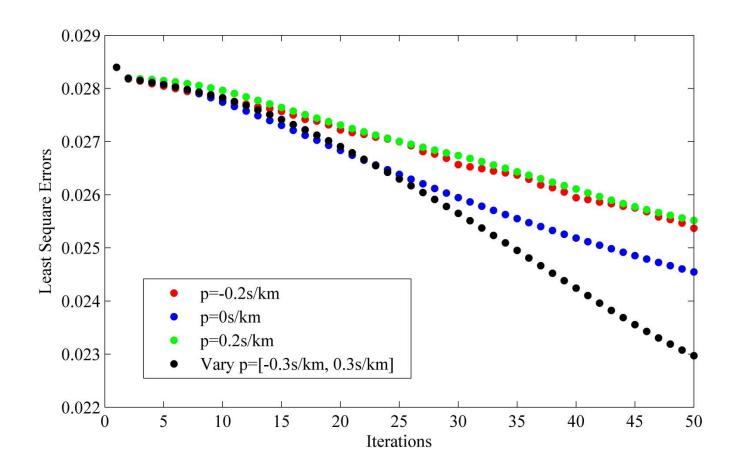
Computational Cost Comparison

Table2. Computational cost comparison for different strategies

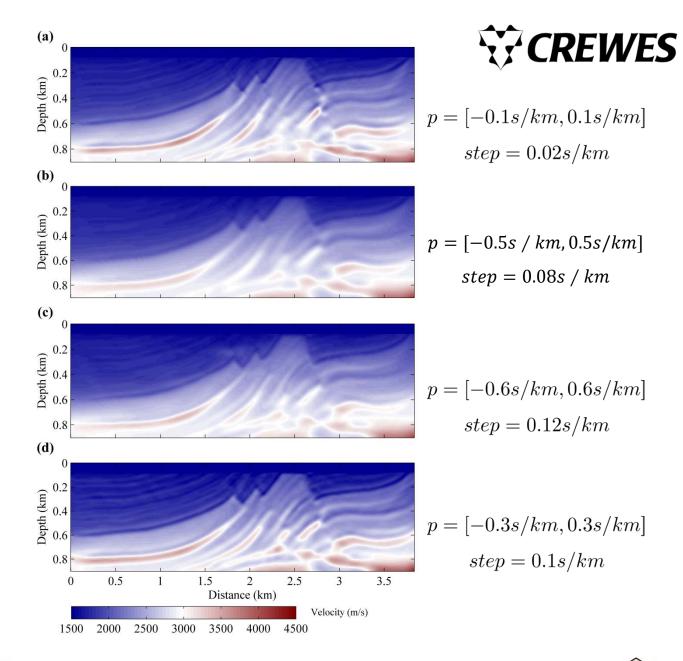

Methods	Gradient	H_a	$diag(H_{en_a})$	Step length	Cost for one iteration
TGN Method	$2N_s$	$N_s \times N_r$		1	$2N_s + N_s \times N_r$
SEGN Method	$2N_p^g$	\backslash	$N_{ps}^H + N_{pr}^H$	1	$2N_p^g + N_{ps}^H + N_{pr}^H$
PGN Method	2	\	$N_{ps}^{H} + N_{pr}^{H}$	1	$N_{ps}^{H} + \dot{N}_{pr}^{H} + \dot{2}$


Numerical Experiment

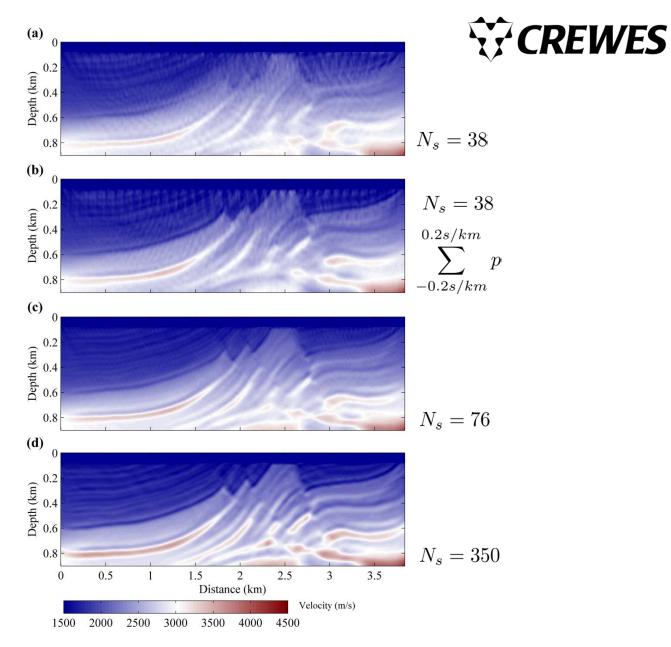
Sects for Fixed and Varying Ray Parameter



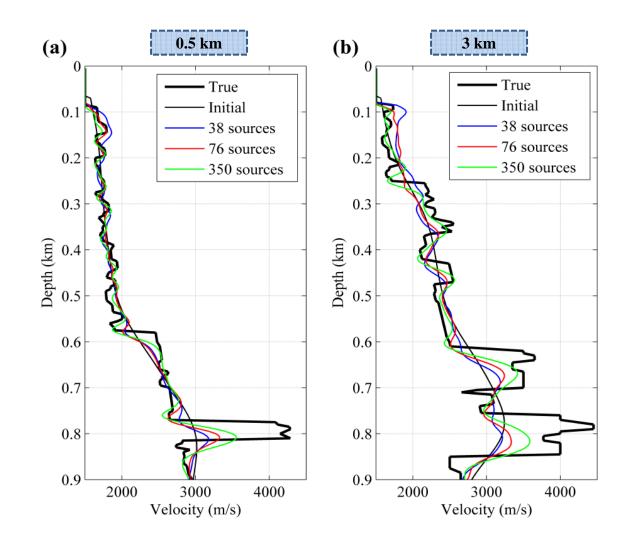
Inversion Results Quality Evaluation


UNIVERSITY OF

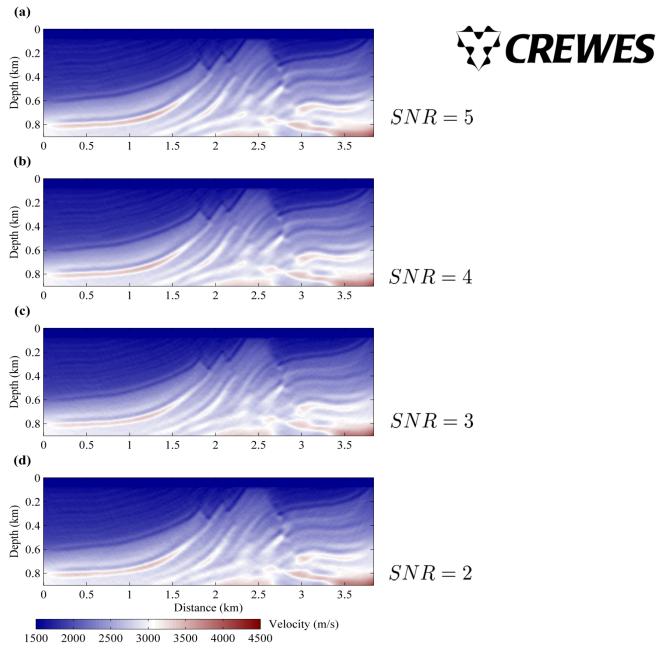
NSERC CRSNG


Effects for Varying Ray Parameter

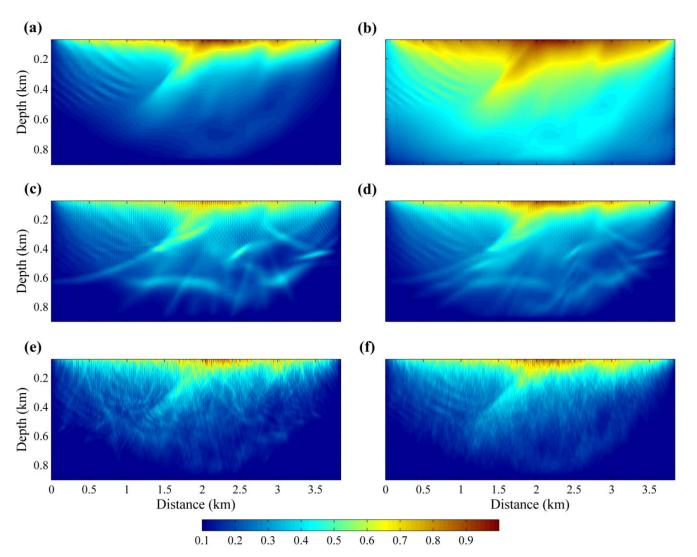
CALGAR Sensitivity to the Ray-Parameter Range



Sensitivity to the Encoded Sources

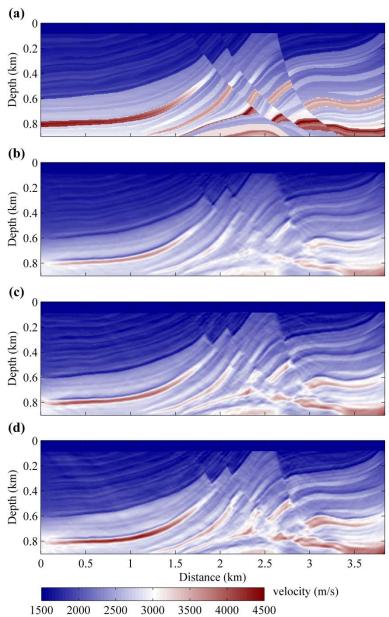


UNIVERSITY OF CALGARY Sensitivity to the Encoded Sources

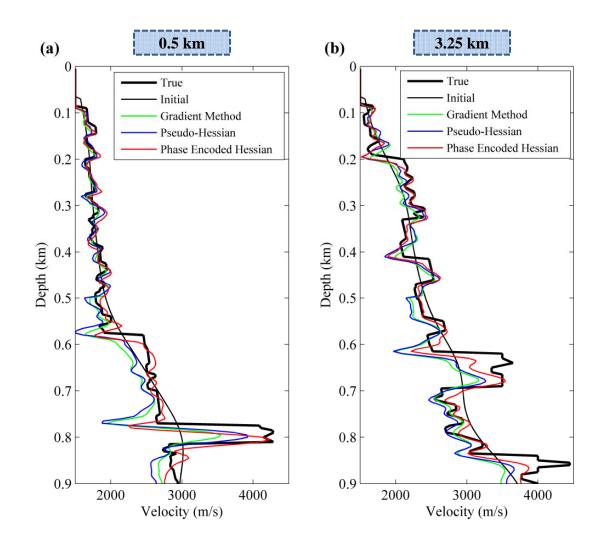


Sensitivity to Gaussian Noise

Initial Velocity Model



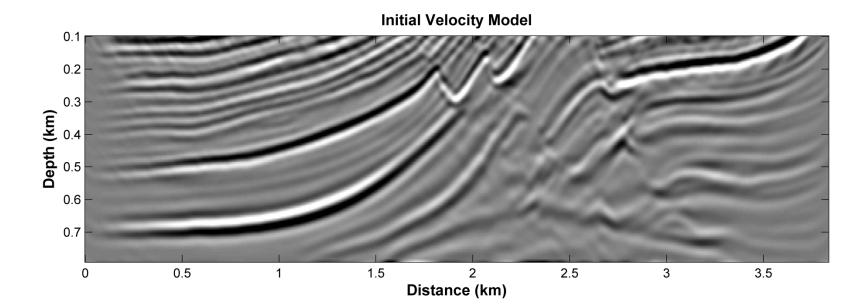
CALGARY Different Hessian Approximations

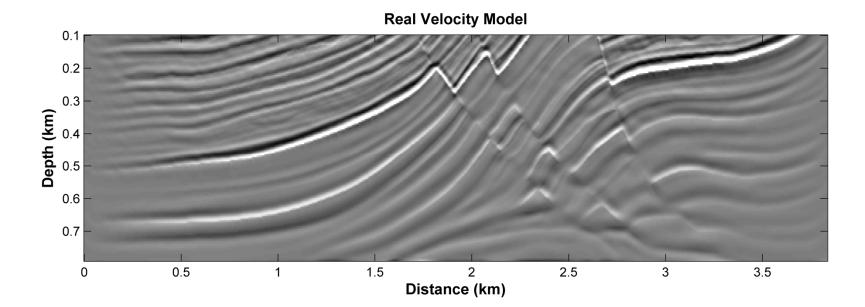


CALGA Different Scaling Methods for FWI

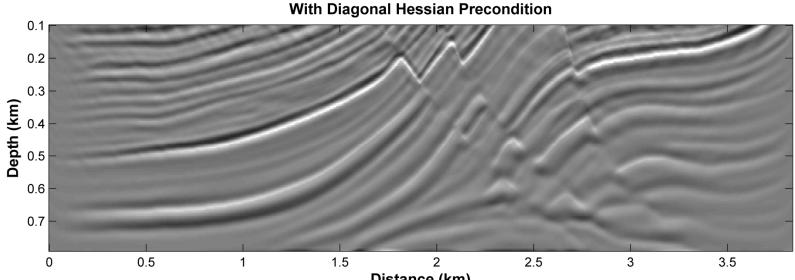
CALGARY Different Scaling Methods for FWI

Reverse Time Migration Image Comparison




Image By Initial Velocity Model

Reverse Time Migration Image Comparison


Image By True Velocity Model

Reverse Time Migration Image Comparison

Distance (km)

Image By Inverted Velocity Model

Conclusion

- □ Hessian matrix servers as a nonstationary deconvolution operator to improve the convergence rate of least-squares inverse problem.
- □ Varying ray-parameter during iterations can reduce the computational cost further and balance the model update.
- □ If the ray-parameter range is too small, the layers with dip angles cannot be inversed in balance, if the ray-parameter range is too large, the convergence rate will be decreased.
- □ If the encoded sources are sparsely distributed, the crosstalk noise will be very obvious, especially for shallow layers.
- □ Hybrid phase encoding strategy can reduce the crosstalk noise better than linear phase encoding strategy with the same number of simulations.
- □ Diagonal part of the phase encoded Hessian can server as a good approximation of the Hessian to precondition the gradient and increase the convergence rate.

Acknowledgements

- □ All CREWES Sponsors
- □ Kris Innanen and Gary Margrave
- Danping, Wenyuan, Vladimir Zubov
- □ Joe Wong, Raul, Babatunde
- □ All the other researchers in CREWES

Thank You !

