Priddis 2014 broadband surface and walkaway VSP seismic experiment

Kevin W. Hall, Kevin L. Bertram, MalcolmB. Bertram, Joe Wong, Peter M. Manning, Eric V. Gallant, Kristopher A.H. Innanen, Don C. Lawton and Gary F. Margrave

Objectives

- Obtain many closely spaced dynamite shots from many azimuths into the permanent geophones in Testhole 1
- Hi-resolution 2D surface seismic lines at a variety of azimuths
- Deploy USSI fibre optic system in Testhole 2. This is the first time we have deployed this system.
- Source tests (Dynamite vs. Vibe)
- Receiver tests (Geophone versus Accelerometer, planting methods).

Geometry

Mount Sopris, Natural gamma tool

Natural gamma logs, Testhole 2

Mount Sopris, Full waveform sonic tool

FIG. 1. The full waveform sonic logging tool. The long red section is the acoustic isolator. The transmitter is the small red band just to the right of the acoustic isolator. The three receivers are the three red bands just to the left of the acoustic isolator.

Full waveform sonic, Testhole 2, 7 kHz

Full waveform sonic, Testhole 2, 20 kHz

Recorders/Sensors

Recorder	Sensor
Inova (ARAM) Aries SPML #1	3C SM-7 10 Hz geophones, surface
Inova (ARAM) Aries SPML #2	3C SM-7 10 Hz geophones, ground screws
Inova (ARAM) Aries SPML #2	3C GS-14-L9 28 Hz geophones, Testhole 1
Inova Hawk	1C SL11 accelerometers
Inova G3i	1C SM-24HS 10 Hz geophones, surface
USSI	OptiPhone 3C accelerometers, Testhole 2

Source	Details
Dynamite	0.125 kg at 5 m depth
Inova Univib	1.5-180.0 Hz linear sweep, 16 s

Dynamite CDP fold, 1.5x1.5 m bins

UTM X coordinate

Univib geometry, 1.5x1.5 m bins

Recorders

Recorders

Recorders

Sources, Dynamite

Sources, Inova Univib

Receivers, SM-7 within ground screw

Receivers, on surface

Dynamite, Inova SM7 10 Hz

- Lines TH6 (E-W), TH1-02 (NE-SW), TH1-01 (N-S), TH1-04 (NW-SE)
- Inova Aries SPML recorder
- 320x3C 10 Hz geophones at 3 m spacing
- 1/8 kg dynamite@5 m depth, 6 m spacing
- 1 ms sample rate, 3 s records
- SP 2101 shown

SP 2101, 0.125 kg Dynamite @ 5m, SM7

SP 2101, 0.125 kg Dynamite @ 5m, SM7

Inova UNIVIB, Inova SM7 10 Hz

- Lines TH6 (E-W), TH1-02 (NE-SW), TH1-01 (N-S), TH1-04 (NW-SE)
- Inova Aries SPML recorder
- 320x3C 10 Hz geophones at 3 m spacing
- 16 s, 1.5-180.0 Hz linear sweep
- 2 sweeps/VP at 6 m spacing
- 1 ms sample rate, 6 s records
- Source gathers for VP 2101 shown

VP 2101, Linear 1.5-180 Hz sweep, SM7

VP 2101, Linear 1.5-180 Hz sweep, SM7

Dynamite, USSI Optiphone

- Testhole 2
- USSI recorder
- 6x3C optiphones (accelerometers) at 20 m spacing
- 1/8 kg dynamite@5 m depth, 6 m spacing
- 0.25 ms sample rate, 3 s records
- Receiver gathers at 75 m depth shown

Testhole 2, 0.125 kg Dynamite@5m, Optiphone

Inova UNIVIB, USSI Optiphone

- Testhole 2
- USSI recorder
- 6x3C optiphones (accelerometers) at 20 m spacing
- 16 s, 1.5-180.0 Hz linear sweep
- 2 sweeps/VP at 6 m spacing
- 0.25 ms sample rate, 6 s records
- Receiver gathers at 75 m depth shown

Testhole 2, Linear 1.5-180 Hz sweep, Optiphone

Dynamite, Geospace GS-14-L9 28 Hz

- Testhole 1
- Inova Aries SPML recorder
- 45x3C geophones at 3.06 m spacing
- 1/8 kg dynamite@5 m depth, 6 m spacing
- 1 ms sample rate, 3 s records
- Receiver gathers at 74 m depth shown

Testhole 1, 0.125 kg Dynamite @ 5m, GS-14-L9

Inova UNIVIB, Geospace GS-14-L9

- Testhole 1
- Inova Aries SPML recorder
- 45x3C sensors at 3.06 m spacing
- 16 s, 1.5-180.0 Hz linear sweep
- 2 sweeps/VP at 6 m spacing
- 1 ms sample rate, 6 s records
- Receiver gathers at 74 m depth shown

Testhole 1, Linear 1.5-180 Hz sweep, GS-14-L9

Acknowledgements

 The authors would like to thank (in alphabetical order): Austin Powder, Carbon Management Canada (CMC) CREWES staff and students, Geokinetics, Halliburton (Landmark Graphics), Inova, OutSource Seismic, US Seismic Systems (USSI), Val's Drilling. We thank the sponsors of CREWES for their support. We also gratefully acknowledge support from NSERC (Natural Science and Engineering Research Council of Canada) through the grant CRDPJ 379744-08.