David C. Henley

### THROUGH A GLASS DARKLY: IMPROVING RAYPATH INTERFEROMETRY

### Summary

- Principles of raypath interferometry
- Successful field data examples
- The two key algorithms in raypath interferometry
  - Reference wavefield construction
  - Raypath domain transform
- Comparison of new methods with old
- Conclusions

### Principles of raypath interferometry

- Static shifts replaced by Deconvolution (to include near-surface effects)
- Surface consistency replaced by Raypath consistency (to include non-vertical raypaths)
- Surface functions introduced (to implement new concepts)
- Surface functions estimated from crosscorrelations, removed by inverse filtering

### Field data examples

- Hansen Harbour PP—surface-consistency mildly violated, only source statics needed
- MacKenzie Delta PP—very large statics, surface-consistency violated, multi-path arrivals
- Spring Coulee PS—very large receiver statics
- Hussar PP—good conventional statics
- Hussar PS—very large receiver statics, possibly nonstationary

### Hansen Harbour PP





CMP stack—*raypath interferometry* 

### MacKenzie Delta PP





Brute CMP stack—*no statics* 

CMP stack—*raypath interferometry* 

### Spring Coulee PS



Brute CCP stack—no statics

CCP stack—*raypath interferometry* 

### Hussar PP





Brute CMP stack—*no statics* 

CMP stack—*raypath interferometry* 

### Hussar PS





Brute CCP stack—*no statics* 

CCP stack—*raypath interferometry* 

### Interferometric correction

- Based on optical interferometry concept
- Uses cross-correlations to correct degraded wavefronts
- Requires estimate of 'reference wavefield'
  - Several approaches possible

- Successive approximation possible
- Brute force' methods help convergence

### Interferometry concept



### Common-raypath interferometry



*Interferometry* applied to *raw* common-raypath panels (left) produces *corrected* panels (right)

# Reference wavefield construction

- Lateral smoothing of raw data ensemble along reference horizon
  - Trim statics can help convergence, but not necessary
- SVD estimation of low-order components of wavefield along reference horizon
  <u>Median smooth required to fill gaps</u>



















### The raypath domain

- Enables statics solutions for data which violate surface-consistency
- Inherently nonstationary (time-varying)
- Several 'raypath' transforms available

### Raypath transforms

- Radial Trace Transform—exactly invertible, raypaths only approximate
- Snell Ray Transform—exactly invertible, requires velocities
- Tau-P transform—no velocities needed, but only approximately invertible (Cova et al)

### Hussar PP

- Conventional statics and residual NMO analysis work well
- Surface consistency is not violated for these data
- Raypath domain provides an alternate solution space













### Hussar PS

- Conventional statics and NMO analysis provide adequate solution for deeper reflections
- Statics appear to be *nonstationary*
- Raypath domain provides increased redundancy and better statics estimates due to 'common-raypath'



Common-receiver stack—evidence of *nonstationary statics* on Hussar PS data



Common-receiver stack after raypath interferometry *no NMO adjustment* required





### Snell Ray Transform—*curved raypaths*



### CCP stack of Hussar PS—*Radial Trace Transform*: straight raypaths



## CCP stack of Hussar PS—*Snell Ray Transform*: *curved raypaths*

### Conclusions

- Reference wavefield can be estimated using trace mixing or SVD
  - Horizon *flattening needed* for either method
  - Trim statics can speed convergence
- Raypath domain can be entered using Radial Trace Transform, Snell Ray Transform, or Tau-P Transform (See Cova et al, following)
  - Snell Ray transform seems to improve performance
  - Tau-P Transform demonstrated by Cova et al

### Acknowledgements

- Funding—CREWES sponsor companies
- Funding—NSERC

 Support and stimulating discussion— CREWES staff and students