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The problems with internal multiples:

• Events which can be misinterpreted as primaries;

• Events which can interfere with primaries;

• Events which can obscure the task of interpretation.

Two advantages of the inverse scattering series
method:

• This method does not require any subsurface
information.

• Internal multiples are predicted with accurate times
and approximate amplitudes.
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• In many cases, internal multiples interfere with
primaries, and removal of internal multiples without
compromising primaries is very challenging.

• Reshef et al. (2003) pointed out that the prediction
itself can be the final output, which is useful as an
interpretation tool for identification only.

• Whether we decide to subtract internal multiples or
not, the ability to identify them amongst primaries is
still a technological necessity.

www.crewes.org

Motivation

4



The formula for 1.5D internal multiple prediction
(Weglein et al., 1997; 2003) is
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Construction of the travel time of an internal multiple.

www.crewes.org

Lower-higher-lower relationship

࢚૚ ࢚૛

࢚૜

6



Two combinations of sums and differences.

+ _ +

(a) (b)

_

Artifacts

www.crewes.org

Lower-higher-lower relationship

7



Schematic diagram of the physical modeling experiment. All
lengths are in scaled units, the standard model scale factor is
1:10ସ.
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Physical modeling experiment

WATER  ݒ௣ ൌ ߩ   ,ݏ/1485݉ ൌ 1000݇݃/݉ଷ

PVC  ݒ௣ ൌ ߩ   ,ݏ/2350݉ ൌ 1300݇݃/݉ଷ

ALUMINUM  ݒ௣ ൌ ߩ   ,ݏ/6000݉ ൌ 2700݇݃/݉ଷ

PLEXIGLAS  ݒ௣ ൌ ߩ  ,ݏ/2745݉ ൌ 1190݇݃/݉ଷ

WATER  ݒ௣ ൌ ߩ   ,ݏ/1485݉ ൌ 1000݇݃/݉ଷ

858m

368m

254m

247m1859m

132m

8



www.crewes.org

The 3D positioning system.
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Physical modeling experiment
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Plan view of the physical modeling data acquisition.
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Source Receiver

 The source and receiver 
are 1.36mm-diameter 
piezoelectric pin 
transducers.

 The source and receiver 
are separated by 100m in 
the ݔ direction. 

 The source has been fixed.

 The receiver was moved 
from ݕ଴ to ݕଵ direction in 
25m increments. 

 The sampling rate was 
2ms.

Physical modeling experiment
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Table 1: A processing flow
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PROCESSING FLOW
1 Trace Header Math
2 Top Mute
3 Spiking Deconvolution
4 Bandpass Filter

Seismic data processing
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Raw data
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The data after applying Trace Mute.
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The deconvolved data with a bandpass filter of 15-20-70-90Hz applied.

The operator length: 80ms
The operator prediction distance: 35ms
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1.5D internal multiple prediction

Event identification by calculating two-way travel times.
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LABEL EVENT APPROXIMATE TRAVEL TIME
A Top of PVC slab 1.155s
B Bottom of PVC slab 1.365s
C Internal multiple 1 1.575s
D Top of aluminum slab 1.861s
E Bottom of aluminum slab 1.905s
F Internal multiple 2 2.071s
G Free-surface multiple 2.310s
H Internal multiple 3 2.357s
I Free-surface multiple 2.520s
J Internal multiple 4 2.567s

Table 2: Summary of approximate travel times of the identified events

44ms

1.5D internal multiple prediction
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IM1

IM3

IM2 IM4

The ray paths of the four dominant internal multiples.

1.5D internal multiple prediction
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1.5D internal multiple prediction
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(a) Physical modeling trace; (b) prediction output; (c) synthetic data trace.

1.5D internal multiple prediction
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• Effects of various ߳ value have been described in
Pan and Innanen (2014). Here we determine the
optimal ߳ value to be 80 sample points.

• An important issue is raised by the notable absence
in the prediction of internal multiples generated
within the aluminum slab.

• The internal multiple prediction algorithm is
designed assuming free-surface multiples have
been removed. The presence of residual and/or
unsuppressed FSMs will in principle affect internal
multiple prediction; wherever possible they should
be removed.

A discussion of the value
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Analysis of the three parameters chosen

Prediction algorithm in the code (from Innanen, 2012).
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Analysis of the three parameters chosen

Comparison of two internal multiple prediction outputs with different frequency bands.
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Fourier amplitude spectrum of the zero-offset trace using a decibel scale.

Analysis of the three parameters chosen
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The algorithm input ܾଵ ݇௚, ݖ

Depth index 
range:
[540-1020]

Wavenumber 
index range: 
[513-1024]

Analysis of the three parameters chosen
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Exp # freBEG
(Hz)

freEND
(Hz)

zBEG zEND kxBEG kxEND Time (s)

1 25 80 540 1020 513 1024 1256.96

2 25 80 560 1015 513 1024 1189.85

3 25 80 560 1015 513 900 856.57

4 25 80 560 1015 513 800 636.24

5 30 80 560 1015 513 800 588.51

Table 3: Time costs with different parameters chosen

Comparing experiments 5 and 1, which shows a time
cost savings of 114%.

Analysis of the three parameters chosen

25



• Prediction results show good agreement with both
synthetic data and physical modeling data.

• Even if subtraction is problematic, prediction results
can lead us to obtain an “internal multiple probability
map”.

• Choosing the beginning and ending integration
points in the nested integrals optimally leads to
considerable computational savings.
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Conclusions
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