

AZIMUTHAL VELOCITY ANALYSIS FOR FRACTURES: ALTOMENT-BLUEBELL FIELD

KHALED AL DULAIJAN^{*}, GARY F MARGRAVE DECEMBER, 2015

Objective

To identify density and direction of fractures for new drilling opportunities and for effective development of reservoirs.

URTeC(Adams et. al., 2014)

Introduction

- Uinta Basin
- Data acquisition & processing
- Method
 - Physical Modeling Test
- Altamont-Bluebell 3D data analysis
- Conclusions

Uinta Basin & Altamont-Bluebell Field

- Northeastern Utah
- Northern-central part of the basin.
- Lake bounded by:
 - North: Uinta mountains making steep north flank.
 - South: gentle slope
- Accumulative production (2014): 336 MMBO, 588 BCFG, and 701 MMBW

Stratigraphy and targets

- **3** main targets are:
- 1. Upper Green River
- 2. Lower Green River (Uteland Butte and Castle Peak)
- 3. Wasatch

Source: Newfield Report

Source: Wooster Geologist Blog

Horizontal Fractures (VTI)

Vertical Fractures (HTI)

Source: Hampson-Russell RroAZ notes

Data Acquisition

- Acquisition data & area: 2010 & 35 mi²
- Source: 2 vibes/shot
- Receiver: 6-geophone array/channel
- Source interval: 220' Receiver interval: 220'
- Source line orientation: N-S
- Source line spacing: 660'
- Receiver line orientation: E-W
- Receiver line spacing: 1100'
- Bin size: 110'x110'
- Nominal fold: 240

Fold & Azimuth distubiution

Data processing

Geometry **Refraction Statics Correction Amplitude Recovery** Noise attenuation Surface-cons amp & decon NMO & Velocity @ 1x1 mi **Residual statics** NMO &Velocity @ .5x.5 mi **3D COV Binning** Migration Velocity Analysis **3D PSTM**

Elliptical NMO (Grechka and Tsvankin, 1998)

$$T^2 = T_0^2 + \frac{x^2}{V_{NM0}^2(\phi)}$$

$$\frac{1}{V_{NMO}^2(\phi)} = \frac{1}{V_{slow}^2} \cos^2(\phi - \beta_s) + \frac{1}{V_{fast}^2} \sin^2(\alpha - \beta_s)$$

 $T^{2} = T_{0}^{2} + x^{2} \cos^{2}(\phi) W_{11} + 2x \cos(\phi) \sin(\phi) W_{12} + x^{2} \sin^{2}(\phi) W_{22}$

solve for T_0 and W_{ij} which yeilds V_{fast} , V_{slow} , and B_s

Physical Model

- A 3-layer physical model:
 - 2 laminated Phenolics
 - Plexiglas
 - ► Water
 - Lab to field scale is 1:10,000 in both length and time.
 - Scaled thicknesses of the 3 layers are: 300 m, 510 m, and 650 m.

Raw Gathers: 3 Reflections

Inline (N-S) & xline (E-W)

100-			100-	-100
200-			200 -	 -200
300	201211-11-11-11-11-11-11-11-11-11-11-11-11		300 -	-300
400			400	-400
500			500	-600
700			700 -	-700
800			800 -	-800
900		(ms)	900- 	-900
1100		Time	1100-	-1100
1200	1200		1200 -	- 1200
1300			1300	-1300
1400	5/1///////////////////////////////////		1400-	-1400
1600-	1500		1600-	- 1600
1700-			1700 -	 -1700
1800	1800		1800 -	-1800
1900			1900	-1900

Common-offset stack: PS attenuation

0° sector & ± 90° sector

Results

	T ₀ from VVAz	β _s from VVAz	V _{slow} from VVAz	V _{fast} from VVAz	Aniso %	Actual β_s	Calc. T ₀	Calc. V _{slow}	Calc. V _{fast}
North Half	1.1617	89.809	2454	2641.1	7.3	90	1.1616	2473.3	2764.7
South Half	1.1759	0.6368	2133.1	2623.2	20.6	0	1.1616	2473.3	2764.7

After & Before application of azimuthal residuals

Results: Fast & Slow Velocity

Results: Anisotropy Percentage

Anisotropy Orientation

Anisotropy Orientation (40°, 19° & 43°)

CONCLUSIONS

Conclusions

- Anisotropic media create strong mode-converted PS waves
- Vertical fractures induce azimuthal seismic anisotropy
- A VVAZ method was used to measure anisotropy percentage and orientation in Altamont-Bluebell field
- SD physical modeling data was used to validate the VVAZ method and results are found to be adequate
- A commercial software was used for benchmarking our results

Thank you

Acknowledgments

- CREWES sponsors for their support
- NSERC for the grant CRDPJ 379744-08
- Devon for permission to use the data and publish the results
- ION Geophysical for time processing of the data
- CGGVeritas for the use of Hampson-Russell software
- Dr. Joe Wong, Dr. Jon Downton, Khalid Almuteri, Dr. Faranak Mahmoudian, Dr. Helen Isaac
- Saudi Aramco for PhD sponsorship of the first author