VSP azimuthal travel time analysis at the Field Research Station near Brooks, AB.

Adriana Gordon, Don C. Lawton and David Eaton









## Outline

- Introduction and objectives
- Theory
- Case Study
- Results
- Conclusions
- Future work
- Acknowledgements















Facilitate and accelerate research and development leading to improved understandings and technologies for geological containment and storage of CO<sub>2</sub> and monitoring of fossil fuel production and environmental mitigation (Lawton et. al., 2014).







3



Facilitate and accelerate research and development leading to improved understandings and technologies for geological containment and storage of CO<sub>2</sub> and monitoring of fossil fuel production and environmental mitigation (Lawton et. al., 2014).

Identify azimuthal anisotropy at the FRS by analyzing the velocity changes







#### Vertical Seismic Profile (VSP)

"A vertical seismic profile (VSP) is a measurement procedure in which a seismic signal generated at the surface of the earth is recorded by geophones secured at various depths to the wall of a drilled well" (Hardage, 2000).



Evans et. al., 2010.







#### Vertical Seismic Profile (VSP)

"A vertical seismic profile (VSP) is a measurement procedure in which a seismic signal generated at the surface of the earth is recorded by geophones secured at various depths to the wall of a drilled well" (Hardage, 2000). Walkaround VSP



NSERC

CRSNG

Containment 8

Monitoring Institut

6

FACULTY OF SCIENCE

Department of Geoscience



## Case study

### Field Research Station (FRS) Location

189 km southeast of Calgary and 25 km southwest of Brooks





Hall et. al., 2015.









## Case study

#### Field Research Station (FRS) Location

Acquisition parameters

| 3C SuperCable            | 3 different levels |
|--------------------------|--------------------|
| Receiver positions       | 106-496 m          |
| Receiver spacing         | 15 m               |
| EnviroVibe               | 10-200 Hz, 16 s    |
| Walk-away shot interval  | 10 m               |
| Walk-around shot spacing | <b>5</b> °         |
| Walk-around offset       | 400 m              |



Hall et. al., 2015.







## Zero offset first break picks

#### Walk-away shot line (line 208), shot 126











## First break travel time variation

#### Walk-around shot line (line 204)









## Statics correction

#### Shot statics from 3D seismic survey

#### 3D acquisition geometry











Containment &



## Statics correction

#### After shot statics from 3D seismic survey











## Statics correction

#### After shot statics from 3D seismic survey









# Smoothing

#### Median filters of 3, 5, 7, 9 and 11 samples













# Smoothing

#### Median filters of 3, 5, 7, 9 and 11 samples











## First break travel time variation

#### After static correction and smoothing









## Residual calculation

**Travel time variation** 

**Velocity variation** 











## Residual calculation

Travel time variation

**Velocity variation** 







18

### Data rotation

### **Rotation of H1 and H2 to Hmax and Hmin**



100

Vista











Ν

### Data rotation









- A sinusoidal trend is noticeable for the traveltime variation, indicative of weak azimuthal anisotropy (HTI). The fast direction (NE) is similar to the Western Canada stress orientation.
- With the traveltime and velocity variations we were able to estimate an approximate value of epsilon equal to 2%.
- Accurate results were obtained with Vista and Matlab for the first rotation. The receivers showed a similar orientation with small variations that needs further analysis.
- For the second data rotation, the incidence angle was calculated with two methods that yield similar results. Although there are several outliers in the hodogram approach that needs further analysis.







- Continue the azimuthal analysis and the processing flow for the VSP walk-around data in order to obtain imaging results.
- Estimate the anisotropy parameters using a relation between the residual functions applied to the data and weak anisotropy approximations (WAA) introduced by Thomsen (1986) and Alkhalifah-Tsvankin (1995).
- Develop a velocity model using the software NORSAR-2D Ray Modelling package would be useful to obtain the incidence angles and compare the results to those presented in this paper.







- CREWES sponsors
- CMC
- NSERC (grant CRDPJ 461179-13)
- Microseismic Industry Consortium
- CREWES faculty, staff and students
- Schlumberger for Vista software



Containment & Monitoring Institute









