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Motivation

(Gaurav Dutta et al. 2014)



The 2D viscoacoustic medium can be expressed as a system of first-order differential equations in terms of the 

particle velocities and stresses.

Newton’s second law equations: 

Stress-strain relations:
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u : Particle velocity
p : Compressional stress

: Relaxation time

r : Memory variable

(Carcions et al., 1988)



For one memory variable, L = 1, the first-order linear differential equations of viscoacoustic wave 

propagation are

where        and        are the stress and strain relaxation times (Robertsson et al., 1994)
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Attenuation is defined as the ratio of maximum
amplitude of a wave field for a particular frequency to
the change of amplitude per cycle

𝛼 𝜔 =
𝜔

2𝑐0𝑄

𝜐𝑝 𝜔 = 𝑐0 1 +
1
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𝜔
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The real part of complex velocity is attenuated phase

velocity (Aki and Richards, 2002)

Absorption and attenuation
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The reflection coefficient of viscoacoustic media is

complex and frequency dependent and can be written as

function of scattering potential (Fathalian and Innanen,

2015).

𝑅𝜐𝑎 ≅
𝑖𝜔

2𝑐0 cos 𝜃0
𝛼 𝑧 − 2𝜁 𝑧 𝐹 𝑘 + 𝛽(𝑧) 1 + cos𝜎
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Perfectly matched layers absorbing boundary condition (PML)

There are three different PML absorbing 

regions:

PML for x direction (d(z) = 0)

PML for y direction (d(x) = 0)

PML in the corners(d(x) > 0, d(z) > 0)

Both damping parameters d(x) and d(z) are

positive, and either d(z) = 0 or d(x) = 0 inside

the PML region in the x and z directions.



In order to introduce the PML for visco-acoustic wave, the first-order linear differential equations will be

modified using the a complex coordinate stretching approach. In the frequency domain, the PML formulations

can be derived as
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Unsplit-PML for 2D viscoacoustic wave equation



By applying the complex coordinate stretching expressed to the linearized equation of motion and equation of

deformation in the frequency domain and transforming back to time domain, the unsplit-field PML formulations for

viscoacoustic can be obtain as:
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Unsplit-PML for 2D viscoacoustic wave equation

𝜕𝑝

𝜕𝑡
= −𝜌𝑐𝑝

2
𝜕 𝑢𝑥 + 𝑑 𝑧 𝒖𝑿

𝜕𝑥
+
𝜕 𝑢𝑧 + 𝑑 𝑥 𝒖𝒁

𝜕𝑧

𝜏𝜀
𝜏𝜎
− 𝑑 𝑥 + 𝑑 𝑧 𝑝 − 𝑑 𝑥 𝑑 𝑧 𝒑 − 𝑟

𝜕𝑟

𝜕𝑡
= −
1

𝜏𝜎
𝑟 + 𝜌𝑐𝑝

2
𝜕 𝑢𝑥 + 𝑑(𝑧)𝒖𝑿

𝜕𝑥
+
𝜕 𝑢𝑧 + 𝑑(𝑥)𝒖𝒁

𝜕𝑧

1

𝜏𝜎
1 −
𝜏𝜀
𝜏𝜎
− 𝑑 𝑥 + 𝑑 𝑧 𝑟 − 𝑑 𝑥 𝑑 𝑧 𝒓

The auxiliary variables (the time-integrated components for velocity, pressure and memory variable fields):
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A 2-4 FD scheme is used in this work and 

the stability condition is
∆𝑥

∆𝑡
≥
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6
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Collino and Tsogka (2001) presented a

relation based on a theoretical reflection

coefficient, where the PML thickness and

the p-wave velocity
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FD implementation of PML

Numerical results



Numerical results

www.crewes.org UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience



Numerical results

www.crewes.org UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience



Numerical results

www.crewes.org UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience



Numerical results

www.crewes.org UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience



Numerical results

www.crewes.org UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience



Reverse time migration
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Numerical results
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Compares the RTM images for acoustic and viscoacoustic approximations with the attenuation

Numerical results
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To eliminate source signatures and low frequency

noises we used the imaging condition and highpass

filter respectively

Imaging conditions are used to correlate the

source and receiver wavefield snapshots to get

the subsurface images(Whitmore and Lines,

1986)

Numerical results
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Numerical results
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Numerical results



Conclusions
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Numerical synthetic data illustrated for strong attenuation the acoustic RTM cannot

correct for the attenuation loss, while the unsplit viscoacoustic wave equations can

compensate the attenuation loss during the iterations.

Comparing the synthetic data results for unsplit viscoacoustic and acoustic RTMs

show that the migration amplitudes of layers are more accurate than the acoustic RTM

and the reflectors are imaged at the correct locations in strong attenuative media.

The difference waveforms between the acoustic and viscoacoustic data show that the

energy loss of wavefiled when wave propagated in the attenuative media.
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