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 In 1982, Jean Morlet, a geophysicist who worked for Total in Paris, published a new 

approach to time-frequency analysis in Geophysics (Morlet et al., 1982, I and II). 

 Up to that point, seismic frequency analysis in was done with the Fourier Transform, 

which did not give time-localized estimates of frequency content.

 Morlet took several ideas: the Gabor wavelet, the Heisenberg uncertainty principle, 

logarithmic frequency increments and cross-correlation, and put them together in 

such a way that he was able to get a time-localized frequency estimate.

 Geophysicists did not recognize Morlet’s originality, but mathematicians did, and his 

method became the Continuous Wavelet Transform, a new branch of mathematics.

 I will summarize Morlet’s approach by analyzing each of the above steps, then show 

the modern formulation of the CWT and an application to seismic data analysis.
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Introduction



The Gabor wavelet

 The motivation for Morlet’s work 

was the wavelet shape  

proposed by Gabor (1941).

 As shown here, the Gabor 

wavelet is a sine (or cosine) 

wave modulated by a 

Gaussian.

 The wavelet shown in the 

bottom figure has its Gaussian 

envelope shown, to illustrate 

the effect of the modulation on 

the cosine and sine waves.
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The mathematical Gabor wavelet

 Morlet writes the Gabor wavelet mathematically as follows, where he defines Dt

as the time width between the points where the modulus drops to 1/2:
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The Fourier Transform of the Gabor Wavelet

 Morlet then computed the modulus of the Fourier transform of the Gabor 

wavelet and showed that it was equal to:

.
2

  where

,
2ln4

)(
exp

2ln2

1
)(

0

2

0







D






















 D
D

t
t

 Setting the amplitudes at angular frequencies 1 and 2 to ½ gives the constant 

product of D and Dt in Heisenberg's time-frequency uncertainty principle : 
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Varying shape ratio with constant period

 Morlet also defines the shape ratio k, 
which relates the time width at half-
amplitude to the mean period, or:

 The figure on the left shows three 
different shape ratios (1, 2 and 4) for 
a constant T0 = 20 ms, or f0 = 50 Hz.

 Higher shape ratios have more side 
lobes. 
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Figure 1 from Morlet et al. 

 Here is Morlet’s illustration of a wavelet and its Fourier transform (right), with k = 2.

 Note that f0 = 50 Hz, T0 = 1/50 Hz = 20 ms, Dt = 2T0 = 40 ms, Df = 0.883/0.04 sec = 22 Hz.

0

0

Dt =40 ms

T0=20 ms
0.5

f0=50 Hz

Df =22 Hz



0 Time (ms)20-20-100 100

T0 = 10 ms

T0 = 20 ms

T0 = 40 ms

 The second key concept in the 

Morlet wavelet is to keep the 

shape ratio constant for varying 

mean periods (or frequencies).

 This figure shows three different 

mean periods (10, 20 and 40 ms) 

for a constant shape ratio of 2.

 Note that all the wavelets now 

have the same number of side 

lobes. 

Varying mean periods with constant shape ratio



Varying mean periods with constant shape ratio

 Here is a movie of the Morlet wavelet as the frequency gets lower.



The extended Gabor expansion (Figure 2 from Morlet et al. part II)

 Since complex signals have a 

discontinuity at zero, Morlet 

next introduced the extended 

Gabor expansion, which 

involved using a logarithmic 

frequency scale in octaves.

 Morlet did not write down the 

math for doing this, instead 

only supplying the figure shown 

here.

 You have to look carefully to 

notice that the scale is 

logarithmic!



The extended Gabor expansion (theory)

 To understand the mathematics, I have 

shown one octave of Morlet’s wavelets 

from f0 to f0/2.
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 This expression can also be expressed as:

 Morlet uses four wavelets per octave, so 

we can express D as:



Wavelet scale

 We can thus introduce the scale parameter s = 2n/m, where n is the number of 

steps below the starting frequency and m is the number of wavelets per octave. 

 Using the scale parameter s and the shape parameter k allows us to re-write the 

Gabor wavelet using only one other parameter, the dominant frequency 0:





























 t

s
i

sk

t 0

2

0 exp2lnexp







 The figure on the right shows the real 

components of eight Gabor wavelets from n = 0 

to 7, where m = 4, k = 2 and f0 = 100 Hz.
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Correlation with the wavelets

 Now we get to Morlet’s final step, which involved cross-correlating each wavelet 

t with the seismic trace st to obtain its wavelet transform.

 Recall that the discrete correlation formula is given as follows where, since we 

are dealing with a complex wavelet, we must take the complex conjugate of the 

wavelet first (indicated by the asterisk on k
*):

 However, a faster approach is to apply frequency domain correlation, which is 

used in our real data example.
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The modern formulation of the CWT

 This leads to the modern mathematical formulation of the continuous wavelet 

transform (e.g. Daubechies), which is written:

 The term a is the scale, and (t) is called the “mother” wavelet, defined by:
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 Although the concepts of scale and shape have been preserved, and the wavelet 

improved by the subtraction of a scaling term, the mathematical formulation has 

lost all the physical intuition that Morlet used.



Field data example with CMP 81 extracted
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 Finally, we will look at 

a field data example, 

where the 2D section 

is shown to the 

immediate right and 

one extracted trace, 

at CMP 81, on the far 

right.

 Note that the 

extracted trace 

crosses one of the 

channels at 0.42 sec.

Han and van der Baan, 2013

Extracted trace

Extracted trace



Short time Fourier transform (STFT) with 50  ms window and CWT

The STFT of CMP 81 is shown on the left and the CWT of CMP 81 on the right.

Note the improvement in resolution on the CWT.

Han and van der Baan, 2013



STFT with 50  ms window and CWT

The STFT of the complete seismic section is shown on the left and the CWT of 

the full section on the right, using 350 scales starting at 150 Hz.

Note the improvement in resolution of the channels on the CWT.

STFT CWT

Han and van der Baan, 2013 Herrera et al., 2014
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 In this talk, I have shown how Morlet formulated a new approach to seismic 

frequency analysis in his classic 1982 papers.

 Morlet took a number of concepts that were familiar to geophysicists at the time, 

such as wavelets, the Fourier transform, logarithmic bandwidth and cross-

correlation, and put them together in a totally new way.

 His conceptual approach was then formalized by mathematicians into a 

comprehensive new theory called the Continuous Wavelet Transform, or CWT.

 Although the new theory was much more complete than Morlet’s original theory, 

it was also much less rooted in physical intuition.

 Thus, there is a need for both geophysicists and mathematicians in this world!

 A real data example showed the improvement in resolution obtained using the 

CWT over the Short Time Fourier Transform (STFT).

Conclusions
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