Zero offset VSP processing of fiber optic cable (DAS) and geophone array at the CaMI Field Research Station

Adriana Gordon* and Don C. Lawton

Outline

- Introduction
- Data set
- Processing
- Results
- Conclusions
- Future work
- Acknowledgments

CaMI FRS

Southern Alberta

~ 200 Km SE of Calgary

Newell County

Animation obtained from: https://silixa.com/resources/what-is-distributed-sensing/

СМС

NSERC

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE Department of Geoscience

New technologies

Distributed Acoustic Sensing (DAS)

Advantages

- Low-cost acquisition once installed
- Non-intrusive
- Full vertical coverage
- Ability to use preinstalled fiber optic cables for DAS measurements.

Limitations

- Upfront cost of the fiber optic cable deployment
- Lower signal-to-noise ratio (S/N) than geophones
- Uncertainty in the precise locations of the DAS channels along the well
- For straight fiber optic cables DAS is only sensitive to axial deformations

New technologies

Observation well 2:

Fiber optic cables (DAS and DTS) 24-level 3C geophone array

CO₂ injection site

- Process two zero-offset VSPs and an offset VSP from the surveys acquired in May and July 2017.
- Compare results of both data sets (DAS and geophone).

Survey Line Vibe Point Offset (m) Vertical Fold

May	13	159	6.39	3
July	21	132	9.18	16
July	21	139	79.10	10

Data set

Source

EnviroVibe: 10-160 Hz 16 s

Receivers

- Geophone array:
 194.9 m 309.9 m, 5 m
- DAS measurements: Channel spacing 0.25 m

DAS shot gather

DAS shot gather

Down loop and up loop calibration

FACULTY OF SCIENCE

Department of Geoscience

Containment &

Monitoring Institute

DAS depth calibration

13

FACULTY OF SCIENCE

Department of Geoscience

Containment &

Monitoring Institute

DAS depth calibration

First geophone trace	194.9	797
Last geophone trace	309.9	1253
Depth aperture	115	114

🚸 CMC

Containment &

First break times and velocity profiles

DAS

Wavefield separation

DAS

Downgoing wavefield

Geophone

After deconvolution

DAS

-10

-70

dB Value

Downgoing wavefield

Geophone

Upgoing wavefield after deconvolution

Corridor stack mute and corridor stack

5016

4816

SHOT

CHAN

TIME (ms)

100

150

200

250

300-

4016

DAS

4016

4216

4416

4616

SHOT

CHAN

TIME (ms)

200

250

300

Corridor stack mute

4416

4616

4816

5016

4216

Geophone

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

Zero-offset vibe point 132 (July)

211

Zero-offset vibe point 159 (May)

Offset vibe point 139 (July)

- Two VSP surveys were acquired at the Field Research Station in May and July, 2017. A geophone array and a fiber optic (DAS) cable was deployed in the observation well 2.
- Two zero-offset VSPs and an 80 m source-well offset VSP were processed using a standard processing flow.
- DAS data set was calibrated with the geophone array to properly identify the corresponding depth of each trace. A difference between 0 to 3 m was calculated from the calibration.
- There is a good match between the corridor stack of the upgoing and downgoing fibre loop.

Future work

- Process the walk-away VSP surveys acquired in May and July 2017 for both data sets.
- DAS signal conversion in order to retrieve a more precise comparison between the signal recorded with the fiber optic cable and the geophone array.
- Process the helical-wound fiber optic data set and compare it with the geophone data set.

- CREWES sponsors
- CMC Research Institute Inc.
- NSERC (grant CRDPJ 461179-13)
- CREWES faculty, staff and students
- Schlumberger for Vista software

