A waveform inversion based on <u>pure</u> P- and S- wave separation

Hassan Khaniani, Shahpoor Moradi and Daniel Trad CREWES sponsors meeting

December 1st , 2017

Outline

Introduction

- Isotropic elastic waves inversion
- Polarization in elastic wave and crosstalk contributions
- Crosstalk problems for full-wave equation migration and inversion

Decoupled wave equation solutions

- Pure P- wave
- Pure S- wave

• Numerical experiments

- Simple models
- Complex model (Marmousi II)
- Field data 3D VSP program
- Conclusions

Isotropic elastic waves inversion

OTTE OTTE

Particle displacement

$$\begin{aligned} (\mathbf{a}) : \delta\hat{\rho}(\mathbf{x}) &= -\int dt \frac{\partial U_j^{\mathrm{F}}}{\partial t} \frac{\partial U_j^{\mathrm{B}}}{\partial t}, \\ (\mathbf{b}) : \delta\hat{\kappa}(\mathbf{x}') &= -\int dt \sum_l \frac{\partial U_l^{\mathrm{F}}}{\partial x^l} \sum_k \frac{\partial U_k^{\mathrm{B}}}{\partial x^k}, \\ (\mathbf{c}) : \delta\hat{\mu}(\mathbf{x}') &= -\int dt \sum_{lm} \left(\frac{\partial U_l^{\mathrm{F}}}{\partial x^m} + \frac{\partial U_m^{\mathrm{F}}}{\partial x^l}\right) \left(\frac{\partial U_l^{\mathrm{B}}}{\partial x^m} + \frac{\partial U_m^{\mathrm{B}}}{\partial x^l}\right) - \frac{2}{3}\int dt \sum_l \frac{\partial U_l^{\mathrm{F}}}{\partial x^l} \sum_k \frac{\partial U_k^{\mathrm{B}}}{\partial x^k}. \end{aligned}$$

- ho : Density
- \mathcal{K} : Bulk modulus
- μ : Shear modulus

 U^F : Forward propagated displacement field from source U^B : Backward propagated displacement field from receivers **CREWES**

Efficiency of inversion formula

NSERC CRSNG

Isotropic elastic waves inversion

Particle displacement (a) : $\delta \hat{\rho}(\mathbf{x}) = -\int dt \frac{\partial U_j^{\mathrm{F}}}{\partial t} \frac{\partial U_j^{\mathrm{B}}}{\partial t}$, Change in displacement (b): $\delta \hat{\kappa}(\mathbf{x}') = -\int dt \sum_{l} \frac{\partial U_{l}^{\mathrm{F}}}{\partial x^{l}} \sum \frac{\partial U_{k}^{\mathrm{B}}}{\partial x^{k}},$ Initial displacement Translation $(\mathbf{c}): \delta\hat{\mu}(\mathbf{x}') = -\int dt \sum_{\mathbf{x}} \left(\frac{\partial U_l^{\mathrm{F}}}{\partial x^m} + \frac{\partial U_m^{\mathrm{F}}}{\partial x^l} \right) \left(\frac{\partial U_l^{\mathrm{B}}}{\partial x^m} + \frac{\partial U_m^{\mathrm{B}}}{\partial x^l} \right) - \frac{2}{3} \int dt \sum_{\mathbf{x}} \frac{\partial U_l^{\mathrm{F}}}{\partial x^l} \sum_{\mathbf{x}} \frac{\partial U_k^{\mathrm{B}}}{\partial x^k}.$: both of P- and S- waves has the main contribution : Density : Bulk modulus :P- wave has the main contribution : Shear modulus $I I^{F}$: Forward propagated displacement field from source :S- wave has the main contribution : Backward propagated displacement field from receivers **OF CALGARY** NSERC CRSNG

Problems...

Computational costs

- Optimization (forward modeling)
- Migration and inversion

• Unexpected artifacts due to the crosstalk effect

Colocation of various wave mode

Wavefield separation (or transformations) and decomposition

- Divergence and curl operators on the wavefield (Dellinger and Etgen, 1990)
- Projection of the wavefield along the polarization vectors (Yan and Sava, 2009; Zhang and McMechan, 2010; Ren and Liu, 2016; Wang and Cheng, 2017)
- Subtracting the pure P- wave from full-wave equation (Wang et al., 2015)

They require full-wave equation solution

Solution by pure mode P- and S- wave separation

Pure mode P- and S- wave equation

(Chen, 2014, Cheng and Kang, 2014, 2016 and Yuan, 2017)

- Benefits
 - Preserve the multicomponent features
 - Reduce the uncertainty of migration/inversion by avoiding colocation of P- and S-waves images
 - Computationally faster that full-wave equation

Pure P- and S- wave equation

Isotropic media
$$\nabla \cdot \left(\tilde{\Gamma} \tilde{U} - \rho \omega^2 \tilde{U} \right) = 0$$
 and $\nabla \times \left(\tilde{\Gamma} \tilde{U} - \rho \omega^2 \tilde{U} \right) = 0$

Pure mode P- and S- wave equation in isotropic media

Velocity-stress method in staggered grid finite difference time domain

P-wave $\frac{\partial v_1}{\partial t} = V_P^2 \frac{\partial \mathcal{D}}{\partial x_1},$ $\frac{\partial v_2}{\partial t} = V_P^2 \frac{\partial \mathcal{D}}{\partial x_2},$ $\frac{\partial v_3}{\partial t} = V_P^2 \frac{\partial \mathcal{D}}{\partial x_3},$ $\frac{\partial \mathcal{D}}{\partial t} = \frac{\partial v_1}{\partial x_1} + \frac{\partial v_2}{\partial x_2} + \frac{\partial v_3}{\partial x_3},$

 ${m \mathcal V}$: Particle velocity

 $D\,$: Compressional stress

EWES

S- wave

$$\frac{\partial v_1}{\partial t} = -V_S^2 \left(\frac{\partial C}{\partial x_2} + \frac{\partial B}{\partial x_3} \right),$$

$$\frac{\partial v_2}{\partial t} = V_S^2 \left(\frac{\partial C}{\partial x_1} - \frac{\partial A}{\partial x_3} \right),$$

$$\frac{\partial v_3}{\partial t} = V_S^2 \left(\frac{\partial A}{\partial x_2} + \frac{\partial B}{\partial x_1} \right),$$

$$\frac{\partial A}{\partial t} = \frac{\partial v_2}{\partial x_3} - \frac{\partial v_3}{\partial x_2},$$

$$\frac{\partial B}{\partial t} = \frac{\partial v_1}{\partial x_3} - \frac{\partial v_3}{\partial x_1},$$

$$\frac{\partial C}{\partial t} = \frac{\partial v_1}{\partial x_2} - \frac{\partial v_2}{\partial x_1},$$
(A, B and C)
Curl components

Description of algorithm for P-to-P and P-to-S

Simple model experiments

151 shots records are simulated and migrated/inverted

Numerical examples

Marmousi II marine environment

Image quality

- Acquisition limitations
 - Shot position

REWES

- Receiver length (10 km in figuration)
- Amplitude radiation patterns (AVO effects)

Marmousi II marine environment

Marmousi II marine environment

Image quality

- Acquisition limitations
 - Shot position
 - **Receiver length (10 km in** split spread configuration)
- Amplitude radiation patterns (AVO effects)

Modeled data

3D VSP RTM Results vs 3D surface seismic imaging

FACULTY OF SCIENCE

Department of Geoscience

CRSNG

CREWES

Conclusion

An algorithm for migration and inversion is developed by

- Pure P- and S- wave separation based on decoupled wave equation
- ✓ It is a multicomponent migration and inversion
- Mitigates the computation time of full-wave equation modeling, RTM and FWI
- Primary reflection data

The method is applicable to

- ✓PP, PS, SP, SH-SH
- Anisotropic medium
- Surface seismic, downhole imaging
- ✓and P- and S- wave polarization in global seismology

Acknowledgments

- □ CREWES faculty and sponsors
- □ NSERC (CRDPJ 461179-13)
- □University of Southern California and U.S. Department of Energy (National Energy Technology Laboratory) for field data provision
- Generation Kris Innanen
- □ Ali Fathalian, Khaled Dulaijan and Bernie Law

Thank you

