Microseismic FWI: trade-offs between source and medium properties

Nadine Igonin and Kris Innanen

December 1, 2017

FACULTY OF SCIENCE Department of Geoscience

Outline

- Introduction and theory:
 - Microseismic
 - MFWI
- Results:
 - Source position error
 - Cross talk
- Conclusion and future work

www.crewes.org

Microseismic: waveform nature

Characteristics:

- P- and S-waves
- Amplitude and polarity determined by moment tensor
- Frequency inversely proportional to magnitude Strike-Slip N

S

Example microseismc event

www.crewes.org

Microseismic: spatial characteristics

Type 1: Hydraulic fracturing

www.crewes.org

Microseismic FWI (MFWI)

In the microseismic world, we need

- An accurate velocity model
- Precise source locations

We propose a FWI scheme to iteratively solve for both of these parameters

Poliannikov, 2014

www.crewes.org

Microseismic FWI (MFWI)

www.crewes.org

$$\mathbf{g}_{s} = -\sum_{r_{g}, r_{s}} \int dt \delta P(\mathbf{r}_{g}, \mathbf{r}_{s}, t | s_{c}, s_{s}) g(\mathbf{r}_{g}, \mathbf{r}, t - t^{*} | s_{c}, s_{s})$$
Residuals One-way Green's function

www.crewes.org

Implementation

• We use 2D acoustic time-domain FWI codes developed by Almuteri and Innanen (2016) in Python to build the new source-term gradient.

www.crewes.org

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience

• 10 m separation distance, 5 Hz dominant frequency

www.crewes.org

• Consistent directionality and symmetry

www.crewes.org

• Large separation distance: 60 m. Indications of cycle skipping?

www.crewes.org

• Gradient as a function of frequency

www.crewes.org

MFWI: Velocity inversion

• Sources arranged as activation of a vertical fault, receivers at surface

• We need enough unique ray-paths to accurately resolve the anomaly

www.crewes.org

Cross-talk

- *Cross-talk*: One parameter is updated in response to data variations caused in part by a different parameter.
- Ex. In 1D, moving the source closer to the receiver produces the same arrival time data as raising the background velocity

www.crewes.org

Cross-talk: velocity term

 Consider moving all the sources up by 10 m → the velocity gradient interprets this as a bulk increase to the model

www.crewes.org

Cross-talk: source term

• An erroneous background velocity changes the shape of the update

www.crewes.org

Future work (1)

• To complete the formulation, we require the Hessian

$$\begin{bmatrix} \delta \mathbf{s}_c \\ \delta \mathbf{s}_s \end{bmatrix} = -\begin{bmatrix} \mathbf{H}_1 & \mathbf{H}_2 \\ \mathbf{H}_3 & \mathbf{H}_4 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{g}_c \\ \mathbf{g}_s \end{bmatrix}$$

- To incorporate a moment tensor, we need to move to an elastic environment, and re-parametrize to invert for a moment tensor also
- To test the method more fully, physical modeling data can be made in the CREWES physical modeling lab

www.crewes.org

Future work (2)

 The superposition of ray paths will have more effect at the source location → potential to *image faults*

www.crewes.org

Conclusion

- MFWI is a FWI implementation that attempts to converge upon both source location and velocity model.
- The parameter cross-talk is a big challenge.
- Future work will involve integrating the Hessian, moving to an elastic environment and using physical modelling data.

www.crewes.org

Acknowledgements

- Kris Innanen
- Khalid Almuteri
- CREWES sponsors and students
- NSERC grant CRDPJ 461179-13
- NSERC Doctoral Scholarship
- SEG Scholarship

Thank you!

Questions/comments?

www.crewes.org

