

Practical multicomponent land FWI

Raul Cova, Kris Innanen and Marianne Rauch-Davies

Banff, December 2018.

1ntroduction

- Land multicomponent FWI remains a challenge in seismic processing
- These challenges include:
 - Unknown source wavelet
 - Heterogenous near-surface
 - Low S/N ratio
- VSP data sets provide data with:
 - Better S/N ratio than surface seismic
 - Since receivers are located in the borehole only the source side propagation is affected by near-surface heterogeneities.
- Understanding how the pre-processing of VSP data impacts the FWI performance is key for developing robust workflows.

Acquisition geometry

Source parameters:

- 62 source points @ 50 m spacing
- Linear sweep, 2-140 Hz,
 16 s length, 0.5 s cosine tapers.

Receiver parameters:

- 229 receiver levels @ 15 m spacing
 (16.7 m 3445.6 m)
- 3C digital geophones in an string of 43 receivers at six array levels.
- Only the geophone levels between
 2302 m and 3445 m were recorded for all source locations

Processing workflow

-10 l

Source-well offset (m)

Near-surface corrections

-0.005

-0.01

Source-well offset (m)

Receiver gathers before static corrections

Receiver gathers after static corrections

Data before noise attenuation

Data after noise attenuation (FX filter, 7 points)

Deterministic Decon

Before Decon

Initial models used for the inversion

- Smoothed well logs were used as initial models.
- 8 source points between 113 m and 1812 m offset were used in the following tests.
- We only inverted for Vp and Vs.
 No model updates were applied to the density model.

Depth windows Frequency scales 250-1000 m 4-8 Hz 750-2250 m 4-12 Hz 2000-3500 m 4-16 Hz 4-20 Hz

First scale [4-8 Hz], near-offset data

Results for near-offset downgoing-wavefield inversion

FWI results: 2D models

FWI results: modelled vs observed data

Far-offset data

Remarks

- Despite obtaining a wider frequency band and addressing non-stationarity, the FWI results using Gabor deconvolved data were not optimal.
- A total variation regularization might provide better results when sharp velocity contrasts are present. Initializing the inversion with a blocky model might also help to include multiples energy in the inversion of VSP data.
- Using a deterministic deconvolution attenuated the short-wavelength multiples
 present in the data facilitating the inversion of the data using a smooth initial velocity
 and density.
- Multiple plus primary data could be incorporated at later stages for a more complete FWI.
- Also, the deterministic deconvolution revealed S-wave events that were hindered by the multiples providing more data for the inversion.

Acknowledgements

Devon energy

Compute Canada

NSERC (Grant CRDPJ 461179-13)

Canada First Research Excellence Fund (CFREF)

CREWES sponsors

CREWES faculty, staff and students.

Backup Slides

Acquisition geometry

Source parameters:

- 62 source points @ 50 m spacing
- Linear sweep, 2-140 Hz,
 16 s length, 0.5 s cosine tapers.

Receiver parameters:

- 229 receiver levels @ 15 m spacing (16.7 m – 3445.6 m)
- 3C digital geophones in an string of 43 receivers at six array levels.
- Only the geophone levels between 2302 m and 3445 m were recorded for all source locations

Transformations

Transformations

Horizontal components rotation

Only the horizontal components were rotated into the source-receiver plane by using hodogram analysis

Horizontal components rotation

Used for the inversion

Only the horizontal components were rotated into the source-receiver plane by using hodogram analysis

Tube-wave attenuation

Wavelet extraction

 Zero phase wavelets were extracted using a deconvolution approach.

- Source wavelet amplitude spectra is computed from the inverse of the first arrivals spectra.
- Phase is assumed to be zero.

Sweep derived

Gabor decon

Deterministic decon

