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== Theme

= Neural networks have been used for some time in geophysics to
guantitatively predict rock properties from seismic data.

= In the last decade there has been tremendous progress in the field of
machine learning thanks to a powerful new technique called deep learning.

— Applications of this include hand writing recognition, image recognition, translation,
and self driving cars.

= These examples make use of “Big” labelled datasets in order to train the
neural networks.

= In the geosciences we are much more restricted in amount of labelled data
that we have access to.

= This presentation explores different strategies to overcome this limitation and
predict reservoir properties using Deep Neural Networks.
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= [ntroduction
— Deep Neural Networks

= The problem of “Small” data

= What can be done with “Small” data?
— North Sea example

= Theory-guided data science

= Theory-guided design
— Using a CNN to estimate P-wave Impedance

= Hybrid theory and data analysis
— Using synthetic data to train a neural network

= Summary
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== Neuron Representation

Bias

Neural Networks are based on an idealized version of how
we believe the brain works (McCullock and Pitts,1943).

= The basic unit within a Neural Network is the neuron.

Neural networks start with a linear model

— The input are the attributes x=[1,Xy, X1, X5, ..., X\]

— The input attributes are summed in a similar fashion as in the
multilinear model.

Z =Wy + W, X, +W,X, + WyXg +--- Attribute 1

Honlinear
separation
of clusters

The output of this is fed into a nonlinear logistic function (or
similar). a(x)= 1
1+exp(-z)

As the function a(x) is between 0 and 1, the neuron is making a
decision whether we are in category O or category 1.

Attribute 2



== Multiclass Classification (3 classes)

= Neurons can be combined in
parallel to perform multiclass
classification for three categories.

= The output with the highest value is
the most probable and classified as
this category
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By combining two multiclass
networks in series we can model
nonlinear functions.

The output of the first layer is hidden
from the user so it is called a hidden
layer.

We can combine many networks in
series to create a multilayer network.

The input feeds forward from the
input layer to the output layer thus
this network is called a Multilayer

Feedforward Neural Network (MLFN).

== Multilayer Feedforward Neural Network

Input Hidden
Layer (I=1)  Layer (1=2)
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== Deep Feedforward Neural Networks (DFNNSs)

In order to model the nonlinear interactions between different features the
network must contain at least one hidden layer.

Additional hidden layers provide extra complexity.

— Extra layers allow the network to parsimoniously model nonlinear transforms and
iImposes a hierarchical structure.

— This allows the network to find and extract the features as part of the training.
If a network has two or more hidden layers it is considered deep.

The weights are solved as large nonlinear inverse problem using iterative

techniques.
— For a Deep Feedforward Neural Network the weights are solved using backpropagation.

Like other supervised methods
— the weights are calculated on a training dataset.

— To ensure the network is not over trained the network is tested on a separate
validation dataset.
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== D0 Wwe have enough training data?

= Deep neural networks have many
layers and parameters increasing the

risk of overfitting

— Overfitting is characterized by observing
— Small training error
— Large validation error

Error

= Possible solutions
— Reduce the number of parameters / layers
— Regularization, early stopping
— Greedy layer-wise pre-training
— Increase the amount data Training Error
— Needs to be labelled data! —_—
— Synthetic data # of Parameters

— Theory-guided data science Bias < > Vaﬁnce




== \\/hat can be done with small data?

To overcome the issue of limited training data the first example limits the depth of the
network to three hidden layers and uses early stopping.

The example is from the North Sea and covers two fields both producing commercial
volumes of oil from reservoir intervals from within the Paleocene.
— Field A is a deep marine channelized submarine fan system.

— Field B is in a remobilized injectite sand, cross cutting a range of stratigraphy at very steep
angles.

The goal of the study was to predict the porosity, volume of shale, water saturation
and volume of net pay.

Six wells were used to train and validate the machine learning.

Three machine learning techniques were tried and compared including
— Multi-Linear Regression (MLR),

— Probabilistic Neural Network (PNN),

— Deep Feedforward Neural Network (DFNN).
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== Net-Pay Prediction Workflow
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== Porosity Prediction

Left: Field A

DFNN provides:

= Better lateral
continuity in the
thin reservoir of
field A

= Good
estimation of
the injectite
sand properties
in field B

» O
Colwell & Kjgsnes, 2018 é‘ &
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|
Training Validation
MLR PNN DFNN MLR PNN DFNN
Corr  Avg. Error| Corr Avg. Error] Corr Avg.Error] Corr Avg. Error] Corr Avg. Error] Corr Avg. Error
VSH 0.929 0.089 0.968  0.0599 0.944 0.081 0.884 0.135 0.723 0.204 0.916 0.091
PHIT 0.692 0.028 0.822 0.023 0.864 0.019 0.593 0.5 0.036 0.703 0.03
SW 0.974 0.043 0.999 0.009 0.994 0.021 0.806 0.171 0.628 0.196 0.883 0.087

Training and Validation Statistics

MLR

Colwell & Kjgsnes, 2018

PNN
TRAINING

CORR RMSE|CORR RMSE|CORR RMSE

CORR RMSE|CORR RMSE|CORR RMSE

VALIDATION

WVSH mPHIT mSW

DFNN

Training and Validation Statistics at the well locations

MLR predicts correct
variations at the well
locations but not correct
magnitude

PNN drops significantly
from training to
validation

DFNN shows the
highest correlation
value and lowest
validation RMS error
(RMSE)

DFNN gives consistent
statistics from training to

validation
&



== Theory-based vs. Data Science Models (Karpatne et al. 2017)
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== Theory-based vs. Data Science Models (Karpatne et al. 2017)

Contain knowledge gaps in describing th é
certain processes 1;9 §
(¢and S,, from velocity and density) é § Theory-guided
S | 8 Data Science Models
= ;
Take full advantage of data science % g (TGDS)!
methods without ignoring the treasure ; =
of accumulated knowledge in |:W Data Science Models ‘
scientific “theories” low

Use of Data High

lKarpatne et al. “Theory-guided data science: A
New paradigm for scientific discovery,” TKDE 2017
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== Theory-guided Data Science

1) Theory-guided Learning

e Choice of Loss Function
» Constrained Optimization methods
 Probabilistic Models

[Limnology, Chemistry, Biomedicine,

Climate, Genomics]

2) Theory-guided Design

 Choice of Response/Loss Function
» Design of Model Architecture

[Turbulence Modeling, Neuroscience]

lKarpatne et al. “Theory-guided data science: A

New paradigm for scientific discovery,” TKDE 2017
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Theory-guided Refinement

Post-processing
Pruning

[Remote Sensing, Material Science]

Hybrid Models of Theory and Data

Science
Residual Modeling
Predicting Intermediate Quantities

[Hydrology, Turbulence Modeling]

Augmenting Theory-based Models

using Data
Calibrating Model parameters
Data Assimilation

[Hydrology, Climate Science, Fluid Dynamics]
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Theory-guided network design: Impedance Inversion

Goal

= Use theory-guided design to build a convolutional neural network (CNN) to
simulate poststack impedance inversion
— poststack impedance inversion is based on the convolutional model

— The idea is to build the physics into the DFNN architecture by using a convolutional operator.

We tested this concept on the Blackfoot data set.
1. We correlated the wells to the seismic and extracted a wavelet.

2. Using the well control and seismic horizons we built a 3D P-wave impedance model.
From this we created a low frequency version of this to serve as a background model.
Performed Impedance inversion to serve as a reference.

3. 3D AVO synthetics were generated based on the 3D P-wave impedance model.

4. Train the DFNN at the well locations using a 9 point convolutional operator
The input attributes are based on the near offset synthetic data and the low frequency impedance model
The 3D Impedance model serves as the target

5. The resulting CNN operator was applied to the seismic to estimate the P-wave impedance and
compared to Impedance Inversion.
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Blackfoot comparison between conventional inversion (top)
=—=and DFNN (bottom).
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== Comparison of the methods at
the 09-08 well location
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These results look amazingly similar.

This slide shows an overlay of the inversion trace and the
DFNN trace at well location 09-08.

Note that the character of the results is very similar, with
slight differences in amplitudes. Where there is a
noticeable difference, like at the location indicated, the
DFNN matches the log curve better.
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DFNN with all wells (above) and 7 wells (below). The indicated wells are blind.
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=== GUulf Coast example using a hybrid theory and data science model

used a hybrid theory and data model to
predict reservoir properties

— We used a theory-guided model to predict the
seismic response due to changes in gas
saturation, porosity and fluid

— Then we use a data science approach (DFNN) to
predict the Lithofacies and saturation from the

seismic data

and transform to angle gathers.
= Only one well is used in this analysis

— The DFNN is trained and validated on synthetic

data

— Then, the DFNN operator is applied on the real

data
20

_ Angle Gathers
In this last example from the Gulf Coast we -

’ ﬁ"‘;;si o
MUDW il
R 3;'.

We worked with the fully processed data,
including log correlation, wavelet extraction,
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== (Generate a synthetic catalog

21

1.
2.

3.

4.

5.

6.

For each well perform a petrophysical analysis
Establish the rock physics model Vp, Vs, p=RPM(4, V,, S,y Pty T)

To establish the links between the elastic domain with the petrophysical properties

Establish the statistics of the key parameters governing the model
The background trend and variance of the key parameters

Generate elastic models that span the range of the known geology by

performing simulations based on the statistics established in step 3
Each simulation represents a pseudo-well

For each simulation generate synthetic seismic angle gathers
The collection of these gathers is called a “Synthetic Seismic Catalog” (Dvorkin et al., 2014)

The synthetic seismic gathers are used to train the neural network
The actual 3D seismic data has been blind to the creation/training process
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Generate synthetic seismic angle gathers for each
simulation: simulation 130

129
(=x=0.00ft, y=3225.001t) Dlevation: kb= Oll.au face=01t, SRD: Oft (same as surface)

ppppp

Track 1

Track 7 Track 3

ﬁ
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Generate synthetic seismic angle gathers for each
== Simulation: simulation 241
111

m «“

iﬂi

phi_sim

Time (ms) 1
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== Training the DFNN

24

The synthetic seismic gathers
are then used to train the
neural network

The synthetic gathers were
processed to generate neatr,
mid and far angle stacks
consistent with the seismic
data.

Any curve can be used as a

target including the

— Elastic Parameters: P-wave
and S-wave impedance,
density

— Rock Properties: Gamma Ray,
Porosity, Saturation

— Facies

The operator is then applied to
the seismic which has been blind
to the whole process so far
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== Applying the DFNN operator to the real data

File View Horizon Window Help
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== Application of DFENN lithology prediction to real volume.
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— Summary

= Deep feedforward neural networks (DFNNs) show great promise as a
methodology to quantitatively predict the reservair.

= The challenge in adopting DFNNs in the geosciences is the relative scarcity of
labeled training data.

= The three examples shown in this presentation showed different strategies in
dealing with this issue.

— The North Sea example showed that by limiting the complexity of the network to three hidden layers
and using early stopping the DFNN achieved better results than other machine learning techniques.

= The next two examples used theory-guided data science solutions

— The Blackfoot example uses theory to guide the network architecture. The CNN impedance
estimates are close to identical to the poststack impedance inversion results.

— The Gulf Coast example used rock physics and seismic theory to generate synthetic data to train the
neural network. The resulting DFNN was then applied to real seismic data generating geologically
plausible estimates of the water saturation and lithofacies.
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== Big Data

= |[ncreasing the amount of training
data improves the accuracy of the
network

= The paper “The Unreasonable
Effectiveness of Data” by Norvig et
al. (2009) argues that increasing
the amount of data is often more
Important than the selection of
choice of algorithm.

31
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