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 I first met Larry Lines in 1976 when we were both new hires (Larry with 
Amoco and me with Chevron) and were introduced by a mutual friend.

 When Larry got transferred to the Amoco research lab in Tulsa, we lost 
touch with each other for a while, but reconnected in the mid-80s through 
our work with SEG, especially on the Board of TLE.

 In the late 90s, Larry and I served on two SEG executive committees 
(Larry as Editor and I as President-elect and President).

 I was so impressed with Larry’s tenacity and research and teaching 
abilities (and all around niceness!) that when I decided to go back to U of 
C to pursue my doctorate I talked him into being my supervisor.

 Tonight I would like to remember Larry through the research we did 
together during those years at CREWES, and show what an influence he 
has had on my work ever since.

Introduction



First CREWES Talk

2001 CREWES Meeting:

Journal of Petroleum Geology, January, 2002:

 Our first CREWES talk, in 2001 (jointly with Dan Hampson and Todor
Todorov), combined multi-attribute transforms and geostatistics and lead to 
a publication in the Journal of Petroleum Geology.



Porosity map from multiple attributes and gestatistics

These figures are from the CREWES paper, where the one on the left shows an impedance slice 
though a channel sand and the one on the right shows the porosity prediction using a combination of 
multiple seismic attributes and geostatistics.

4



Second CREWES Talk

2002 CREWES Meeting:

The Leading Edge, 2002:

SEG Expanded 
Abstracts, 2002:

 Our second CREWES talk, in 2002 (jointly with Chris Ross), was a tutorial 
that explained two types of neural networks using an AVO classification 
problem, and lead to both an SEG expanded abstract and a TLE paper.



The AVO classification problem

 The figure on the left shows that a linear boundary can solve for either 
the top or base of a gas sand on an AVO cross-plot, but not both.

 The figure on the right shows that by using a second layer of neurons, 
we can transform the problem in a linearly separable one.

Here are two figures from that paper:
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The AVO classification problem

 The figure on the left shows the generalized neural network used for 
solving this problem.

 The figure on the right shows the intuitive weights that were used in 
solving the problem, which are all + or – 1.
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Types of neural networks

 But, as is shown in the following figure, neural networks and machine 
learning are about more than just classification, and involve clustering 
and nonlinear regression:

 At the 2003 meeting, Larry and I proposed a new type of clustering that extended 
the K-means algorithm using statistical distance (unfortunately, although this 
seemed like a new idea to us, it had already been published!)
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CREWES Talks

2003 CREWES Meeting:

The figure on the left, 
from this talk, shows how 
traditional K-means will 
miss-identify the wet 
trends and anomalies in a 
synthetic AVO crossplot, 
whereas the figure on the 
right shows the correctly 
classified clusters using 
Mahalanobis K-means.



Nonlinear regression neural networks

 We were also working on neural networks that performed nonlinear 
regression with seismic attributes, which included:

– The Multi-layer Feedforward Network (MLFN)
– The Generalized Regression Network (GRNN)
– The Radial Basis Function Network (RBFN)
 Our CREWES presentation at the 2002 meeting (and at the 2003 SEG 

meeting) compared the RBFN network to the other two networks:

2002 CREWES Meeting:

2003 SEG 
Expanded 
Abstract:



Neural network comparison

 Here are two figures from that paper that give a comparison between the 
Radial Basis Function and Generalized Regression Neural Networks.

 Notice the definition of the low-velocity channel sand in the deeper part of 
the section.

Figure 10:  Application of the GRNN algorithm to line 95 
of the 3D volume, after training using all the wells. 

Figure 11:  Application of the RBFN algorithm to line 95 
of the 3D volume, after training with all the wells.



Other Talks and Papers

2004 CREWES Meeting:

Geophysics, 2003:

2005 SEG 
Extended 
Abstract:

 Here are several other papers that Larry and I published during my time as 
his Ph.D. student (but I won’t have time to discuss them tonight):



 Thanks to Larry, I graduated from the U of C with my Ph.D. in geophysics in 
2004, and my thesis reflected much of what I have just touched on.

 But in the fifteen years since, Larry and I have never stopped talking and 
collaborating, through my continued involvement in CREWES, the SEG 
(Larry was President from 2008-2009), and the fact we live about fifteen 
minutes apart in Varsity.

Zoom to the present

 In fact, our best technical discussions have 
happened while walking with one of Larry’s 
three Malamutes (most recently, Pearl, but I 
think this is Denali) at Varsity Ravine Park.

 So the last part of this talk was inspired by 
man’s best friend! 



A seismic inversion example
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 In the July, 2019 issue of The Leading Edge, I published an article entitled 
“Machine learning and geophysical inversion – A numerical study”.

 The article was based on 
discussions with Larry.
Here is the forward model 

that I used.
 The mathematics is 

shown below:

 As shown below, this problem has 
an exact geophysical inverse:



 I then looked at the machine learning approach, which I implemented as a 
supervised neural network, where we know both the input and output:

The machine learning approach

 That is, the machine learning algorithm learns the weights that will transform 
the seismic trace into the reflectivity.
 This is actually a type of nonlinear regression, so I first discussed the linear 

regression approach, given by the following mathematics:
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Linear regression

 A way to visualize the weights is to show the 
straight line fit to the reflection coefficients versus 
seismic amplitudes, as shown here.
 The true values are shown by the black points 

and the line represents the equation:

 In deconvolution we got a perfect fit because 
our model assumptions were correct.  

ˆ 0 0.6= +r s

 In least-squares regression, the points are fit in a “best” least-squares sense.
 Let us now move to the neural network approach.



The feedforward neural network

We saw that the straight-line solution given by linear regression did not give a 
perfect fit between the true seismic and reflectivity values.  
 Neural networks allow us to extend linear regression to nonlinear regression.  
 In the feedforward neural network the term feedforward refers to how the output is 

computed from the input if the weights have already been determined,where the 
training of the weights is performed using what is called error backpropagation. 

 The key innovation in the feedforward neural 
network is the used of multiple neurons with 
nonlinear functions, which most commonly 
are logistic functions, as shown on the right, 
with the formula:
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The feedforward neural network

 In the first part of the process we 
apply two sets of bias and gradient 
weights to the seismic.  
 This can be written in vector format 

as follows, where superscript (1) is 
the first layer:
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We then apply the logistic 
function in each neuron:

 Finally, we apply linear 
weights in the last neuron 
where superscript (2) is 
the second layer:
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Error backpropagation

 As shown here, error 
backpropagation involves 
updating the weights in a 
backwards manner to reduce 
the error.
 This is an iterative process.

r−

(2) (2)ˆ= −r rδUpdate weights to reduce error

 The computation of the scaled final reflectivity after 10,000 iterations is:
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Feed-forward network results

 As shown on the upper right, this is the sum of two “basis functions” given by:

 The cross-plot of the 
output reflectivity 
against the input 
seismic is shown by 
the blue line.
 Note the good fit to the 

training points.
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The least-squared error

 The back propagation network approaches 
its answer in an iterative way.
 To understand the computation, we can 

compute the least-squared error after each 
iteration, using the formula:
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 The backpropagation error is shown in 
the graph on the right.
 Note that between iterations 100 and 

2000 the network has become trapped 
in a local minimum.

 This can be a problem for back 
propagation networks, so let’s now 
look at several different approaches.



Gaussian basis function networks

 So let’s now apply the Radial Basis 
Function Network (RBFN) and Generalized 
Regression Neural Network (GRNN).

 This takes me full circle to what Larry and I 
were working on almost 20 years ago.

 Both are based on the a weighted sum of 
the Gaussian of the distance squared 
between an output point and each input, 
divided by a variance:
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 The figure shows an example with s0 = −1.

22



RBFN weights

 For our deconvolution problem, the RBFN weights are computed by inverting the 
inter-point basis vector matrix and multiplying by the desired output:
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 For a small value of sigma, this means that 
the values on the main diagonal are equal to 
1 and on the off diagonals are equal to 0, 
giving weights that are equal to the 
reflection coefficients:

 This is shown on the next slide for σ = 0.3.
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Radial basis function network results, sigma = 0.3

 As with the regression result, we can crossplot the output reflectivity against the 
input seismic, shown above left, where we get a perfect fit to the input points.
 The figure on the left shows the weighted RBFN Gaussian basis functions (note 

that there are four basis functions but two are equal to zero).



Radial basis function network results, sigma = 1.0

 Here, the sigma factor is equal to 1.0, which makes the Gaussian basis functions 
much wider.
 However, note that we still get a perfect fit to our points.



GRNN weights

 Unlike the RBFN weights, the GRNN weights are not pre-computed by inversion 
but are computed “on-the-fly” using the basis functions and desired outputs:

 For small sigma values, this again ensures a perfect fit at the output points. 
 For example, at s0 = s3 = −1.5, we would get the exact result (for small sigma):
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 This is shown on the next slide for all output points, using σ = 0.3.

 However, for σ = 1.0, on the following slide, the fit is no longer perfect.
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Generalized regression network results, sigma = 0.3

 Again, we can crossplot the output reflectivity against the input seismic, shown 
above left, where we get a perfect fit to the input points.
 The figure on the left shows the weighted GRNN Gaussian basis functions (note 

that there are four basis functions but two equal zero).



Generalized regression network results, sigma = 1.0

 Here, the sigma factor is equal to 1.0, which makes the basis functions much wider.
 Unlike the RBFN method, the fit to the points is not perfect, and is similar to a least-

squares fit as sigma increases, except that the outside values of -1 and +1 are 
never exceeded (that is, the line does not go to + and – infinity).



Comparison of the regression results

 The linear regression on the left is quite simple to understand.
 The multi-layer feedforward network (second to left) is the sum of two nonlinear 

logistic basis functions (since we used two neurons).
 For small sigma values, the RBFN and GRNN networks on the right both give a 

perfect fit to the points by summing four Gaussian basis functions.



Comparison of the regression results

 The linear regression on the left is quite simple to understand.
 The multi-layer feedforward network (second to left) is the sum of two nonlinear 

logistic basis functions (since we used two neurons).
 For small sigma values, the RBFN and GRNN networks on the right both give a 

perfect fit to the points by summing four Gaussian basis functions.
 For large values of sigma, RBFN still fits the points, but GRNN does not.
 However, in practice, we have found that GRNN is less prone to over-fitting.



 In this talk I have attempted to honour Larry’s memory by talking about 
the work we have done together over the years and the influence that 
Larry has had on my own research.

 In the process, I have also tried to demystify machine learning algorithms 
and show that they have a definite mathematical structure that can be 
understood.

 Larry was a gentle soul but also had a formidable intellect and was a 
wonderful and beloved teacher.

 The best part of Larry was how interested he was in the science we were 
discussing and how his penetrating questions always improved my 
understanding of the topic at hand.

 I will really miss our walks in the park with Pearl!

Conclusions



Larry’s Last Lecture (courtesy Ahmed Elsabban)

 The one thing I did not 
mention in this talk was 
that for many years Larry 
and I co-taught a course 
on inversion through the 
SEG and CSEG.

 My favourite part was 
when I got to sit and 
watch Larry lecture.

 Like Ahmed, I attended 
Larry’s last lecture, and it 
is a memory I will always 
cherish.
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