

Least squares DAS to geophone transform

Jorge Monsegny, Kevin Hall, Daniel Trad, Don Lawton

Calgary, Canada December 3 2020

Motivation

DAS: strain (rate)

Containment and Monitoring Field Research Station CaMI-FRS

Monitoring facilities at CaMI-FRS

(Lawton et Al., 2019-2020)

1.1km Trench

- 1. The least squares DAS to geophone transformation is based on a linear modelling operator that includes most of the known DAS aspects.
- 2. The least squares DAS to geophone transformation can invert the early times and the high frequency part of the geophone trace.
- 3. The regularization is fundamental in this least squares problem.

1. DAS principles.

2. Derivation of a particle velocity to strain rate linear operator based on DAS principles.

3. Proposal of a least squares inversion based on the particle velocity to strain rate operator.

4. Inversion test with DAS data from CaMI-FRS.

(Modified from Posey et Al., 2000)

(Modified from Posey et Al., 2000)

(Modified from Posey et Al., 2000)

DAS principles

Backscattered pulses electrical fields:

$$E_A = E_{0A} \exp(i(\omega t + \Phi_A))$$

$$E_B = E_{0B} \exp(i(\omega t + \Phi_B)),$$

B's backscattered pulse electrical field when the fibre changes length:

$$E_{Bd} = E_{0B} \exp(i(\omega t + \Phi_{Bd}))$$

= $E_{0B} \exp(i(\omega t + \Phi_B + \frac{4\pi n\xi \delta l}{\lambda})),$

Interference pattern with B's perturbed electrical field:

$$I_{AB} = (E_A + E_{Bd})(E_A + E_{Bd})^*$$

= $E_{0A}^2 + E_{0B}^2 + 2E_{0A}E_{0B}\exp(i(\Phi_A - \Phi_B + \frac{4\pi n\xi\delta l}{\lambda})).$

Strain from measured fibre length change:

$$\epsilon_f(s) = \frac{\delta l}{L_G}$$

Interference pattern dynamic phase:

$$\Phi_A - \Phi_B + \frac{4\pi n\xi \delta l}{\lambda}$$

Strain from measured fibre length change:

$$\epsilon_f(s) = \frac{\delta l}{L_G}$$

Particle velocity to strain rate linear operator

$$\delta l(s) = u(s + L_G/2) - u(s - L_G/2).$$

$$\epsilon_f(s) = \frac{1}{L_G} (u(s + L_G/2) - u(s - L_G/2)).$$

$$\dot{\epsilon}_f(s) = \frac{1}{L_G} (v(s + L_G/2) - v(s - L_G/2)),$$

Particle velocity to strain rate linear operator

$$v(s) = \vec{t}(s) \cdot \vec{v}(s)$$

$$\dot{\epsilon}_f(s) = \frac{1}{L_G} (\vec{t}(s + L_G/2) \cdot \vec{v}(s + L_G/2) - \vec{t}(s - L_G/2) \cdot \vec{v}(s - L_G/2))$$

$$\dot{\epsilon}_f(s) = \frac{1}{L_G} (v_z(s + L_G/2) - v_z(s - L_G/2)),$$

Particle velocity to strain rate linear operator

$$\dot{\epsilon}_f(s_i) = \frac{1}{L_G} (v_z(s_{i+N/2}) - v_z(s_{i-N/2})).$$

$$\begin{bmatrix} \dot{\epsilon}_f(s_1) \\ \vdots \\ \dot{\epsilon}_f(s_i) \\ \vdots \\ \dot{\epsilon}_f(s_M) \end{bmatrix} = \frac{1}{L_G} \begin{bmatrix} -1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & -1 & 0 & \cdots & 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & & & & \vdots \\ 0 & \cdots & 0 & -1 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} v_z(s_{1-N/2}) \\ \vdots \\ v_z(s_i) \\ \vdots \\ v_z(s_{M+N/2}) \end{bmatrix}$$

$$\vec{d} = G\vec{m},$$

LS inversion based on the particle velocity to strain rate linear operator

$$\vec{d} = G\vec{m},$$

$$\begin{bmatrix} G \\ \epsilon R \end{bmatrix} \vec{m} = \begin{bmatrix} \vec{d} \\ \vec{0} \end{bmatrix}$$

- Solved with a **Conjugate Gradient Least Squares Method**.
- R=I to obtain the **smallest** model.
- R=derivative to obtain the **flattest** model.

Straight DAS

Smallest inverted geophone from DAS

Smallest inverted particle velocity from DAS

$$\dot{\epsilon}_f(s_i) = \frac{1}{L_G} (v_z(s_{i+N/2}) - v_z(s_{i-N/2})).$$

Straight DAS

Flattest inverted geophone from DAS

Flattest inverted particle velocity from DAS

Vertical geophone

Geophone

Smallest inverted geophone from DAS

Smallest inverted particle velocity from DAS

Filtered geophone

Filtered vertical geophone

Smallest inverted geophone from DAS

Smallest inverted particle velocity from DAS

V Individual traces comparison

- 1. The least squares DAS to geophone transformation is based on a linear modelling operator that includes most of the known DAS aspects.
- 2. The least squares DAS to geophone transformation can invert the early times and the high frequency part of the geophone trace.
- 3. The regularization is fundamental in this least squares problem.

UNIVERSITY OF CALGARY Global Research Initiative in Energy Research

This research was undertaken thanks in part to funding from the Canada First Research Excellence Fund

Containment & Monitoring Institute

Any questions or comments?

You can find me at:

Jorge.monsegnyparra@ucalgary.ca