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Outline
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 Physics-based deterministic methods:
• Tomography
• Full waveform inversion
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Seismic Inversion Methods

Pros Cons

High generalization ability
Physics-incorporated
Less data requirement

✗ Iterative process
✗Accurate initial models
✗Computational expensive
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 Data-driven methods
• Bayesian models
 Deep learning
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Seismic Inversion Methods

Pros Cons

Fast and efficient
End-to-end framework
Less computational burden
No expert required

✗Big data requirement
✗No physics-involved
✗Generalization ability is

dependent on training
dataset
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Seismic Inversion Methods
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 Objective function:
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Methodology: Physics-based

Forward
operator

Adjoint State
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Methodology: Physics-based
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Methodology: Physics-based

 Objective function:
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Methodology: Data-driven

Auto-Differential

 Objective function:
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Methodology: Data-driven & Physics-based
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Methodology: Physics-guided
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Methodology: Hybrid Physics-guided
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Methodology: Network Architecture
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Training a Physics-guided Neural Network (PGNN)

10 Synthetic Salt Models

10 Shot gathers
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Training a Physics-guided Neural Network (PGNN)

 Trade-off parameters
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Numerical Examples: Training & Validation
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Numerical Examples: Test Results
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Data residual

19

Numerical Examples: Test Results
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Error Analysis
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Generalization Ability
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Uncertainty Analysis: Deep Ensembles
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Uncertainty Analysis: Dropout

Gal and Ghahramani, 2016
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Uncertainty Analysis: Dropout
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Uncertainty Analysis: SEG salt Models

Truth

Mean

Error

Std



Jian Sun

 We propose a hybrid physics-guided neural network for seismic
inversion by simultaneously reducing both model misfit and
physics-based data residual.

 The trade-off parameter selection is essential and analyzed.
 We perform error and uncertainty analysis of deep neural network

predictions.
 Given the same training dataset, the physics-guided network

outperforms the fully data-driven network:
o Higher accuracy (smaller model misfit)
o Obey Physics laws (smaller data residual)
o Lower uncertainty
o Less anomalies
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Conclusions
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Thank you!

Q & A
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