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Background

Locations of calibration shots

Tan et al., 2018

Initial velocity Calibrated velocity

• 1-D layered isotropic velocity models are typically used for microseismic event location

• Velocity is calibrated prior to being used for MS event location



Physics-guided neural network



Physics-guided neural network

 Input & Output

Input: Picked first arrival 
times of P- and S-waves

Output: Layer velocity 
values for P- and S-waves



Physics-guided neural network

 Fully connected layers

 Input Layer: 2 X number of geophones
 Hidden Layer: 32
 Output Layer: 2 X number of layers

Number of Neurons

Activation Function

 Relu

 Sigmoid 
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Physics-guided neural network

 Scaling & Shifting layer

 Scaling & Shifting 

a0:Lower bounds of layer velocities

a1:Perturbation intervals of layer 
velocities

𝐯𝐯 = 𝐚𝐚0 + 𝐚𝐚1 ⊙ 𝐲𝐲



Physics-guided neural network

 Forward modeling layer

Ray bending



Physics-guided neural network

 Loss function
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 Loss function

 Origin time

Tan et al., 2018

Nelson and Vidale, 1990
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Synthetic Example

 Acquisition geometry & Velocity model 

 12 geophones
 6 calibration shots
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Synthetic Example

 Simplification from 3D to 2D Hodogram
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Synthetic Example

 Adam algorithm
 1,000 iterations
 Noise standard deviation: 0.5 ms
 PyTorch
 Intel Core i7-8700 CPU, 16 GB Memory
 ~ 10 min for training 

 Results
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Synthetic Example

P-wave arrival times S-wave arrival times

Mean rms errors:  0.45 ms and 0.51 ms
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Synthetic Example

 Locations of Calibration Shots

Mean deviations of depth and 
distance: 2.2 m and 3.6 m

Hybrid loss function

Arrival time residual Time difference residual
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Synthetic Example

 Locations of Calibration Shots

Arrival time residual Time difference residual Hybrid loss function

 Velocity-calibration 
problem

 Event-location 
problem
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Synthetic Example

 Uncertainty Analysis

Results using six calibration shots Results using one calibration shot

 Mean deviation from true velocity: 76 m/s, 97 m/s 
 Mean standard deviation: 33 m/s, 47 m/s

 Noise standard deviation: 0.5 ms
 100 times inversion with different initializations
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Summary

We designed a physics-guided neural network to calibrate 1D layered velocity model that 

 incorporates a forward modeling layer

 eliminates the need for training data and the explicit programming for inversion algorithm

A hybrid loss function is used that provides better constraints for both event-location and velocity-
calibration problems

The proposed neural network will be further tested with field data
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Synthetic Example

Mean deviations of depth: 2.2 m, 2.7 m
Mean deviations of distance: 3.6 m, 4.7 m
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