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Problem Statement

Tensile Crack Double Couple

CLVD

• Different source mechanisms produce 
distinct DAS-seismic records.

• Can machine learning be used to learn 
these distinct features and characterize 
data based on source mechanics? 
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Convolutional Autoencoder (CAE) Architecture

Input Image (𝑥𝑥𝑖𝑖𝑖𝑖)

Encoder Decoder

20 Epochs

Reconstructed Image ( �𝑥𝑥)

𝐽𝐽(𝑊𝑊) = 𝑥𝑥𝑖𝑖𝑖𝑖 − �𝑥𝑥 2

GOAL: Minimize difference between 
input and reconstructed images 
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Convolutional Autoencoder (CAE) Architecture

Clustering
- K-means
- K-

means++
- OPTICS
- DBSCAN

Estimate MT label
- Generative 

adversarial 
networkEncoder
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Result: End-to-end feature extractor which 
maps an input image to its most salient 
features
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Synthetic Test Dataset

• 10,000 microseismic images generated with 
analytic modeling tool. 

• 80% of images used to train CAE.
• 20% of images used for validation.

• Random moment tensors constrained by being 
compensated linear vector dipole, tensile crack, 
or double couple dominate. 

Image 1436 Image 1740 Image 4120

Image 5494 Image 6016 Image 8002
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Pre-Processing for Moment Tensor Feature Extraction
Raw data Pick apex, compute NMO, flatten

Window and extract P-wave and 
S-wave Input for CAE
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Feature Space Dimensionality and Predictions

Input Images

Reconstructed Images

Difference

Goal: Select minimally complex feature space that leads 
to reasonable image reconstruction.
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Generative Adversarial Network for Labelling 
Generative adversarial networks are a two-player game

Generator: Given latent features - produce believable moment tensor for input feature representation.

Discriminator: Given a latent feature and label pair, discern physical labels from those generated by network G. 
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GAN Labeling of DAS-Microseismic Images
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Full Moment Tensor Estimation

Error in 𝑀𝑀𝑥𝑥𝑥𝑥

Error in 𝑀𝑀𝑦𝑦𝑦𝑦

Error in 𝑀𝑀𝑥𝑥𝑦𝑦 Error in 𝑀𝑀𝑥𝑥𝑥𝑥

Error in 𝑀𝑀𝑦𝑦𝑥𝑥 Error in 𝑀𝑀𝑥𝑥𝑥𝑥
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Field Data Reconstruction

Field Data Reconstruction

Extracted P-wave

Extracted S-wave
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Modeling and field data comparison

𝑀𝑀 =
−0.69 −1.00 −0.69
−1.00 −0.35 −0.22
−0.69 −0.22 −0.69

Field Data

Modeled Data

Predicted 
Field

Modeling

u -0.1994 -0.2012
v -0.3006 -0.3019
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Conclusions and Future Work

Conclusions 

• Convolutional autoencoder trained to compress input data to feature space representation.

• Processing of input data shown to be crucial. 

• Two methods developed to use features for source mechanism information.
• Clustering shown to group images by similar source mechanisms. 
• Generative adversarial network able to predict Hudson or full moment tensor.

• Extension to field data generated positive results. 

Future Work

• Further study extension of methods to field data. 

• Extend method for enhanced moment tensor information such as strike or dip.

• Use similar methods to launch other machine learning initiatives.  
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Estimating Seismic Source Mechanisms

Tensile Crack CLVD Double Couple (shear)

• Source mechanisms estimated through 
moment tensor inversion (MTI)

• Allows for inferences about fracture 
mechanics. 

– Fracture orientations
– Likely HC flow paths
– Localized in situ stress state
– Optimization of HF treatments

• MTI is an expensive and time-consuming 
process. 

• Not readily transferable to new 
acquisition technologies like Distributed 
Acoustic Sensing (DAS).

M =
Mxx Mxy Mxz
Myx Myy Myz
Mzx Mzy Mzz
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Workflow

Raw DAS-
Microseismic Data Process Data Train neural 

network

Feature extractor

Feature space 
representation

Clustered Images

Train Generative 
Adversarial 

Network

Prediction of 
Source Mechanism

Yes

Network 
Trained?

No

• Cluster images with 
similar source 
mechanics.

• New data characterized 
based on cluster it 
belongs too.

Method 1 Method 2
• Train advanced network 

to learn moment tensor.

• Estimate moment tensor 
of new datasets.

Reduce 
Dimensionality
(PCA or TSNE)
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Analyzing Feature Space

Method 1: Clustering in which we group points such that 
images with strong correlated features reside in the same 
group. 

Method 2: Generative adversarial network that learns 
mapping from features for moment tensor estimate.
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Dimensionality Reduction

T-distributed stochastic neighbor 
embedding (T-SNE)

• Dimensionality reduction techniques 
can help clustering algorithms find 
natural clusters.

• T-SNE is a nonlinear dimensionality 
reduction technique for visualizing 
high dimensional data. 

• Separates natural clusters and 
eliminates crowding.  
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Clustering and Source Mechanism
+CLVD Dominated

TCO Dominated
DC Dominated

-CLVD Dominated
TCC Dominated

DC Dominated

-CLVD/DC Mixed
Noise
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Analyzing Feature Space

Method 1: Clustering in which we group points such that 
images with strong correlated features reside in the same 
group. 

Method 2: Generative adversarial network that learns 
mapping from features for moment tensor estimate.
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Reconstruction 10 Features

Wrong predicted moveout

Wrong node 
location

Incorrect 
polarity

Poor P-
wave 

prediction
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Reconstruction 25 Features

Corrected moveout, but
poor amplitude prediction

Poor p-wave 
prediction Poor P-

wave 
prediction
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