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Introduction

 Coléou et al. (2003), in a TLE article, were 
the first to apply unsupervised clustering 
techniques to seismic facies classification.

 The left two panels show the Self 
Organizing Map (SOM) technique with 6 
classes (top) and 12 classes (bottom).

 The right two panels show the K-means 
technique with 6 classes (top) and 12 
classes (bottom).

 I will not discuss the SOM technique today 
but will focus on the K-means technique as 
well as Gaussian Mixture Modelling 
(GMM), a newer clustering method.
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Gaussian Mixture Model Example

 Wallet and Hardisty (2019), in an article in 
Interpretation, applied the Gaussian Mixture 
Modeling (GMM) technique to seismic 
facies classification.

 The four panels on the right show the 
application of GMM to a set of amplitude 
slices through a seismic volume.

 The upper left shows two clusters, the 
upper right shows three clusters, the lower 
left shows five clusters, and the lower right 
shows six clusters.

 Let’s now look at the theory of both K-
means and GMM clustering.

Wallet and Hardisty (2019),3



The K-means algorithm

 If we start with N M-dimensional data points (e.g., M attributes) the K-means 
algorithm will divide these points into K clusters.

 The K-means algorithm is implemented as follows:
 Pick the number of clusters, K, and divide the input data points randomly 

into these K clusters. 
 Compute the M-dimensional means of the clusters.
 Compute the distances between each point and each cluster and assign 

each point to the cluster for which this distance is a minimum. 
 Re-compute the means based on the new cluster assignments.
 Iterate through the above three steps until convergence.

 The key assumption is that we know how many clusters are present in the data, 
so in a typical application you may want to try different values of K.

4



The K-means algorithm in two dimensions

 The general K-means algorithm can be applied in any number of dimensions M.
 But the algorithm is much easier to visualize in M = 2 dimensions, where the 

points, means and distances are written as follows:

 This is the standard K-means algorithm, in which distance is interpreted as the 
Euclidean distance (we will look at statistical distance later).

 I will first illustrate the K-means method with several “toy” datasets and then use 
a set of clusters derived from the seismic inversion of a Gulf Coast dataset.
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A simple example of K-means

 This example has four clusters, where the cross-plot on the left shows the points as 
red dots (input in random order) and the initial means (incorrect) as blue crosses.

 The next three cross-plots shows the updates after the 1st, 2nd and 3rd iterations.
 After the 3rd iteration, the means have “locked in” to the cluster centres, and we can 

clearly identify the four clusters by drawing circles around the means.
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A second example

 Next, consider this second 
example, where the clusters have 
elliptical shapes.

 Although this is a synthetic 
example, it is based on an AVO 
Class 3 intercept (A) versus 
gradient (B) cross-plot.

 The three clusters represent a 
wet trend, the base of gas sand 
and top of gas sand.

Base gas 
sand

Wet Trend

Top gas 
sand
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The K-means result

 Applying K-means with K = 3 leads 
to the following incorrect result.

 This is because the basic K-means 
algorithm finds circles, not ellipses.
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The 2-D Gaussian (or Normal) Distribution

 The elliptical shapes of those clusters can be modelled by the 2D Gaussian 
distribution:

 A simpler way to write the Gaussian distribution is as follows:
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Three special cases

If b ≠ 0, we get tilted 
ellipses (negative slope if 
b < 0 and vice versa).

If b = 0 and a ≠ c, we get 
vertical ( a < c) or horizontal 
(a > c) elliptical curves: 

If b = 0 and a = c , the 
Mahalanobis distance is 
the Euclidean distance: 
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 Using zero means we can write the 
Mahalanobis distance as follows:
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The Mahalanobis K-means algorithm

 This suggests a modification of the K-means algorithm as follows:
 Pick the number of clusters, K, and divide the input data points 

randomly into these K clusters. 
 Compute the M-dimensional means, µk, of the clusters, as well as the 

covariance matrices Σk within each cluster, where k = 1, 2, … , K.
 Compute the Mahalanobis distances between each point and cluster 

and assign each point to the cluster for which this distance is a 
minimum. 

 Re-compute the means and covariances based on the new cluster 
assignments.

 Iterate through the above three steps until convergence.
 Now, let’s see how well this algorithm works on our second dataset.
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The Mahalanobis K-means result

 Applying modified K-means leads 
to the following correct result:

 This plot annotates the cluster means 
and lines of constant variance:

 I presented this algorithm at the 2003 CREWES meeting (Russell and Lines, 
2003), not realizing that the algorithm had already been invented by Sung and 
Poggio (1994), who called it the elliptical K-means method12



The Gaussian Mixture Model (GMM) 

 A more recent implementation of this method is called the Gaussian Mixture 
Model (GMM), which is a mixture pdf of N M-dimensional feature vectors xn, 
which are grouped into K classes CK .
 Each feature vector has a conditional probability given by:
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 GMM starts with an initial guess of the means and covariance matrices of each 
class, and determines the correct values by iterating to a solution.
 Unlike K-means, the data is never physically re-ordered during the process.
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 Here is a plot of one inline from 
the pre-stack inversion of a 
Gulf Coast dataset, which is 
intersected by a well that found 
gas at a time of 2550 ms.

 The traces represent acoustic 
impedance (IP) and the colour 
represents VP/VS ratio (the 
green is low VP/VS at the gas).

 Three zones have been picked 
on the line, from the gas sand, 
shallow sands and shales and 
deeper calcite cemented 
sands.

Gulf Coast example
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The Gaussian Mixture Model (GMM)

 On this cross-plot, the upper set of points 
represent the shale, the lower points the 
gas sand, and the rightmost points the 
carbonate.

 These are the values that were extracted 
from the pre-stack inversion of a Gulf 
Coast dataset shown previously.

 Notice that we are cross-plotting inverted 
Vp/Vs ratio against inverted P-impedance 
(Ip).

 The points are presented to the algorithm 
in random order.
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Training the GMM via Expectation-Maximization (EM) 

 The GMM is then trained using the 
Expectation-Maximization, or EM, 
algorithm.
 The Gaussian functions can have full, 

diagonal or spherical covariance matrices.
 I will initialize the GMM with three means 

and covariances given by:
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Clustered result

 This figure shows our clustered 
result, with their Gaussian contours 
shown. 

 The colours can be thought of as 
“labels”, which will tell us how to 
classify the points.

 The final statistics are:
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Facies clustering in the Blackfoot dataset

 Finally, l will apply K-means and 
GMM to the Blackfoot dataset 
(Dufour et al. 2002), shown on the 
right, to perform facies clustering.

 The algorithm will be applied to a 
10 ms window starting 10 ms 
below the Lower Mannville event.

Lower Mannville:

10 ms window

 This means that we are now doing the clustering in 5-dimensional space.
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The input data slices

 The Blackfoot dataset consists of 5 data slices from the seismic volume 
between times of 10 ms and 18 ms below the Lower Manville.

 I extracted the data slices the HampsonRussell GeoView program using our 
Python Ecosystem.

 I then saved it as a five column ASCII file which was input to a Python program 
for a recent CREWES Learning Lab that I presented.

 In the Python implementation, the K-means algorithm uses only the Euclidean 
option.

 Therefore, it was necessary to use the GMM algorithm to implement the 
Mahalanobis distance.

 The data and results are shown in the final slides.
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 Here is a display of the 
5 data slices from the 
Blackfoot dataset.

 Note the change in the 
stratigraphic features 
from slice to slice.

The input data slices
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Results using three clusters 

 With 3 clusters the K-means and GMM results are similar except that K-means 
sees the NW-SE feature as less extensive than GMM and shows a prominent 
event (in blue) on both sides of this feature.  

 The facies on the NW part of the map is clearest on the K-means result. 
 The circular facies in the top east side of the map is more obvious in the GMM 

result.21



Results using 5 clusters

 With 5 clusters the K-means and GMM results are even more similar than with 
3 clusters if you note the different colour schemes for the cluster order.  

 Both the K-means and GMM algorithms show similar detail in the NW-SE 
feature and also on the event in the NW corner of the map.  

 Also, the large circular facies in the top east part of the map is becoming more 
distinct in both methods.
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Results using 10 clusters

 With 10 clusters the K-means result is much noisier than the GMM result.
 Also, the GMM result is more consistent with the previous examples using 3 

and 5 clusters.
 Thus, the GMM method appears to be more robust than the K-means 

approach in this area.
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Conclusions

 In this talk I discussed unsupervised clustering, specifically K-means clustering 
and Gaussian Mixture Modeling.

 The traditional K-means algorithm starts with random means and then updates 
the means by sorting the points using minimum Euclidean distance.

 We found that the K-means algorithm becomes much more powerful if we use 
statistical distance as a sorting criteria instead of Euclidean distance, which 
requires updating both the means and the covariance matrices.

 The Gaussian Mixture Model (GMM) is equivalent to K-means with statistical 
distance, except it starts with a random guess of the means and covariance 
matrices and finds the solution with the expectation-maximization (EM) algorithm.

 In my first three examples (two synthetic and one real data example) I performed 
clustering in 2D space.

 In my last example, for facies classification, the clustering was performed in 5D 
space and I varied the number of clusters.
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