

Rock physics analysis of well-log data

Qi Hu, Kris Innanen, and Marie Macquet

CREWES Sponsors Meeting December 2, 2021

- Background: the Countess 10-22 well
- Rock physics modeling
- Rock physics interpretation

Background

Layout of the FRS, showing the seismic acquisition grid and well locations (Lawton, 2019)

Stratigraphic succession in the Injection well (Countess 10-22)

Wireline logs in Countess 10-22

• Acquired (2015):

gamma ray, caliper, resistivity, dipole sonic, bulk density, et

Interpreted using Schlumberger's elemental log analysis (ELAN) :

porosity, permeability, solid and fluid compositions, etc.

For study

 $V_{\rm P} - V_{\rm S} - \rho$

Porosity, solid and fluid compositions

Background

Goal: Establish a link between rock physics properties and elastic parameters.

 $(V_{\rm P},V_{\rm S},\rho)=f(\phi,V_{\rm qu},V_{\rm cl},V_{\rm ca},V_{\rm co},...)~f\colon$ Rock-physics model

Background

Resampling

- Injection well (Countess 10-22) at the FRS
- Rock physics modeling
- Rock physics interpretation

Rock physics model

Dry rock (Soft-sand model)

Two endpoints
Solid phase (
$$\phi = 0$$
)
(Voigt-Reuss-Hill)
 $K_0 = \frac{1}{2} \left[\sum_{i=1}^{N} f_i K_i + \left(\sum_{i=1}^{N} f_i / K_i \right)^{-1} \right]$. $K_{\text{HM}} = \left[\frac{n^2 (1 - \phi_c)^2 G_0^2}{18\pi^2 (1 - v_0)^2} P_e \right]^{1/3}$
Interplolate $\phi \in (0, \phi_c)$ using Hashin-Strikman upper bounds
 $K_{\text{dry}} = \left(\frac{\phi/\phi_c}{K_{\text{HM}} + 4/3G_{\text{HM}}} + \frac{1 - \phi/\phi_c}{K_0 + 4/3G_{\text{HM}}} \right)^{-1} - 4/3G_{\text{HM}},$

Saturated rock (Gassmann's equation)

$$K_{
m sat} = K_{
m dry} + rac{(1 - K_{
m dry}/K_0)^2}{\phi/K_f + (1 - \phi)/K_0 - K_{
m dry}/K_0^2}$$

Brie's fluid mixing: $K_f = (K_{ ext{liquid}} - K_{ ext{gas}})(1 - S_{ ext{gas}})^3 + K_{ ext{gas}},$

Rock type:

Fixed values:

4 mineral components (quartz, clay, calcite, coal) 2 fluid components (water and CO₂)

Parameter	Value	Parameter	Value
Quartz bulk modulus	37 GPa	Coal bulk modulus	8 GPa
Quartz shear modulus	44 GPa	Coal shear modulus	3 GPa
Quartz density	$2.65 \mathrm{g/cm^3}$	Coal density	$2 \mathrm{g/cm^3}$
Clay bulk modulus	25 GPa	Water bulk modulus	2.2 GPa
Clay shear modulus	9 GPa	Water density	1 g/cm^3
Clay density	$2.6 \mathrm{g/cm^3}$	CO ₂ bulk modulus	0.01 GPa
Calcite bulk modulus	76.8 GPa	CO_2 density	$0.4 \mathrm{g/cm^3}$
Calcite shear modulus	32 GPa	Critical porosity	0.36
Calcite density	$2.71~{ m g/cm^3}$	Degree of adhesion	0.5

Table 1. Rock physics parameters used in this study

Parameters of interest:

 $(V_{\mathrm{P}}, V_{\mathrm{S}}, \rho) = f(\phi, V_{\mathrm{qu}}, V_{\mathrm{cl}}, V_{\mathrm{ca}}, V_{\mathrm{co}}, S_{\mathrm{co}_2}, P_{\mathrm{eff}})$

Validation

Average errors: 3.4% , 5.5% , 1%

$$(V_{\mathrm{P}}, V_{\mathrm{S}}, \rho) = f(\phi, V_{\mathrm{qu}}, V_{\mathrm{cl}}, V_{\mathrm{ca}}, V_{\mathrm{co}}, S_{\mathrm{co}_2}, P_{\mathrm{eff}})$$

Use of rock physics model:

- 1. Constructing well logs (especially Vs)
- 2. Interpretation of rock and fluid properties

Background

Constructing the shallow section of Vp, Vs, and density logs

- Injection well (Countess 10-22) at the FRS
- Rock physics modeling
- Rock physics interpretation

Estimation of rock physics properties from seismic elastic attributes:

$$(V_{\rm P}, V_{\rm S}, \rho) = f(\phi, V_{\rm qu}, V_{\rm cl}, V_{\rm ca}, V_{\rm co}, S_{\rm co_2}, P_{\rm eff}$$

Nonlinear inverse problem

Is empirical relationship available?

16

Estimation of rock physics properties from seismic elastic attributes:

$$(\underbrace{V_{\mathrm{P}}, V_{\mathrm{S}}, \rho}_{\mathbf{d}}) = f(\phi, V_{\mathrm{qu}}, V_{\mathrm{cl}}, V_{\mathrm{ca}}, V_{\mathrm{co}}, S_{\mathrm{co}_{2}}, P_{\mathrm{eff}})$$

$$\mathbf{m}$$

Misfit function:
$$E(\mathbf{m}) = \|\mathbf{d} - f(\mathbf{m})\|^2$$

Optimization: Neighborhood algorithm (directed Monte-Carlo)

Neighborhood algorithm (NA)

Sambridge, 1999

18

Neighborhood algorithm (NA)

Hu, 2020 CREWES sponsors meeting

19

Estimation of rock physics properties from seismic elastic attributes:

.....

Cases:

- 6 unknowns: porosity (\emptyset) + 4 minerals (V_q , V_{cl} , V_{ca} , V_{co}) + 2 fluids (S_w , S_{co2}) + pressure
- 4 unknowns: porosity (\emptyset) + 4 minerals (V_q , V_{cl} , V_{ca} , V_{co}) + 1 fluid (S_w)
- 3 unknowns: porosity (\emptyset) + 2 minerals (V_q , V_{cl}) + 2 fluids (S_w , S_{co2})
- 2 unknowns: porosity (Ø) + 2 minerals (Vq, Vcl) + 1 fluid (Sw)
- 2 unknowns: porosity (\emptyset) + 1 mineral (V_q) + 2 fluids (S_w , S_{co2})

• 6 unknowns: porosity (\emptyset) + 4 minerals (V_q , V_{cl} , V_{ca} , V_{co}) + 2 fluids (S_w , S_{co2}) + pressure

Data: $(V_{\rm P}, V_{\rm S}, \rho)$

• 4 unknowns: porosity (\emptyset) + 4 minerals (V_q , V_{cl} , V_{ca} , V_{co}) + 1 fluid (S_w)

Data: $(V_{\rm P}, V_{\rm S}, \rho)$

• 3 unknowns: porosity (\emptyset) + 2 minerals (V_q , V_{cl}) + 2 fluids (S_w , S_{co2})

• 2 unknowns: porosity (\emptyset) + 2 minerals (V_q , V_{cl}) + 1 fluid (S_w)

• 2 unknowns: porosity (\emptyset) + 1 mineral (V_q) + 2 fluids (S_w , S_{co2})

Add 5% error to Vp, Vs, and 10% error to density

What we learn from the sensitivity study:

- 1. Estimation of rock physics properties is very difficult if the number of parameters is larger than the number of data, because we randomly search a model space with infinitely many solutions.
- 2. The estimation is very accurate as soon as the system is not underdetermined.
- 3. Including shear velocity and density as input data can largely reduce the uncertainty in rock physics interpretation (a motivation to choose elastic inversion over acoustic inversion)

😯 Summary

- We present a rock physics workflow to convert reservoir properties to seismic attributes at the CaMI FRS.
- The rock physics model is used to construct the shallow section of velocity and density logs. The result shows a good agreement with the local geology.
- To estimate rock physics properties from seismic attributes, It is best to include enough input data or focus on limited solid and fluid phases by making appropriate assumptions on the others.

- CREWES sponsors, staff, and students.
- NSERC (Grant CRDPJ 543578-19)
- Containment and Monitoring Institute, CMC