The 2018 CREWES VSP survey: FWI of the accelerometer and straight DAS fiber datasets

Matthew Eaid^{*}, Scott Keating, and Kris Innanen

CREWES Sponsors Meeting December 3rd, 2021

2018 Vertical Seismic Profile

2

Inclusion of DAS data in FWI

$$Su = f$$

 $S^{\dagger}\lambda = \mathbf{R}^{\mathrm{T}}(\mathbf{R}\mathbf{u} - \mathbf{d})$

Inclusion of DAS data in FWI

$$Su = f$$

 $S^{\dagger}\lambda = \mathbf{R}^{T}(\mathbf{R}\mathbf{u} - \mathbf{d})$

Elastic land-base FWI challenges

- Unknown source characteristics and complex near surface wave propagation are challenging to model.
- How can prior subsurface information be included in the model parameterization?
- Regularization that improves convergence but is geologically reasonable.

Elastic land-base FWI challenges

- Unknown source characteristics and complex near surface wave propagation are challenging to model.
- How can prior subsurface information be included in the model parameterization?
- Regularization that improves convergence but is geologically reasonable.

Shot record, 20 m offset

Effective Sources

Effective Sources

Elastic land-base FWI challenges

- Unknown source characteristics and complex near surface wave propagation are challenging to model.
- How can prior subsurface information be included in the model parameterization?
- Regularization that improves convergence but is geologically reasonable.

Model parameterization

11

Model parameterization

- Strong interparameter relations suggest subsurface can be characterized by single parameter.
- Metric chosen is distance along the three parameter trendline computed through nonlinear regression.
- More parameters could be used to encapsulate more variance or describe CO₂ induced changes.

Elastic land-base FWI challenges

- Unknown source characteristics and complex near surface wave propagation are challenging to model.
- How can prior subsurface information be included in the model parameterization?
- Regularization that improves convergence but is geologically reasonable.

Accelerometer data inversion

Strong data influence makes region around well disproportionately sensitive

Source and receiver-related artifacts can occur if data fit is only inversion criterion

We introduce a layer-promoting regularization term as an additional inversion objective

This helps restrict consideration to more reasonable models

Accelerometer data inversion – Regularization

Strong data influence makes region around well disproportionately sensitive

Source and receiver-related artifacts can occur if data fit is only inversion criterion

We introduce a layer-promoting regularization term as an additional inversion objective

This helps restrict consideration to more reasonable models

DAS data inversion – Model regularization tests

Under-regularized

DAS data inversion – Model regularization tests

Under-regularized

17

DAS and accelerometer data inversion – Comparison

$$T_{ii} = \begin{cases} 1 - \tau_D & for \ accel. \\ \tau_D & for \ DAS \end{cases}$$

19

FWI DAS-Accelerometer tradeoff results

33% DAS - 66% Accelerometer

25% DAS - 75% Accelerometer

50% DAS – 50% Accelerometer

DAS data inversion – Data fit

Conclusions

- Three key strategies developed for FWI convergence:
 - 1. Effective source estimation
 - 2. Log based parameterization
 - 3. Layer based regularization
- Combined DAS-Accelerometer inversions provide good baseline models and strong data fit.
- Baseline models developed that could support time-lapse FWI at the Field Research Station

Acknowledgements

- CREWES Staff and Students
- Chevron
- CREWES Industrial Sponsors
- SEG Foundation

- Scott Keating
- Qi Hu
- Junxiao Li

NSERC-CRD (CRDPJ 461179-13 and CRDPJ 543578-19)

