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Motivation

Reverse time migration

Handle steep geologic 
structure and lateral 
velocity variations

Low resolution for deep structures 
when given the insufficient data Aperture limited

CNN-based RTM with 
multiple reflection energy 

method(RTMM-CNN)

1. Mitigate the artifacts
2. Improve the resolution
3. Learn the lithologic 

structure from different 
feature maps
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resolution

Convolutional neural network 
reverse time migration (Lu et al., 
2020; Torres and Sacchi, 2021)
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Wang et al., 2017; Huang and Trad, 
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Theory 

• RTM with surface multiple (RTMM)

• A modified U-Net based RTM with multiple (RTMM-CNN)
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RTM with surface multiple (RTMM)

• Based on the modified RTM scheme with multiple reflections (Liu et al., 2011), we only use 
the primary and first-order multiple reflections. 𝐔 𝑧 , 𝑧 = 𝐗 𝐒(𝑧 , 𝑧 )𝐃 𝑧 , 𝑧 = −𝐔(𝑧 , 𝑧 )

𝐌 𝑧 , 𝑧 = −𝐗 𝐃(𝑧 , 𝑧 )
𝐈 𝑥, 𝑧 = 𝐃 𝑥, 𝑧, 𝑡 ∗ 𝐌𝐁(𝑥, 𝑧, 𝑡)
𝐃 𝑥, 𝑧, 𝑡 = 𝐃 𝑥, 𝑧, 𝑡 + 𝐃 𝑥, 𝑧, 𝑡

Observed data:

Observed data after free surface reflection:

where 𝐒(𝑧 , 𝑧 ): the source𝐗: the media response matrix 

First-order multiple:

The imaging condition:

(1)

(2)

(3)

(4)

(5)
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A modified U-Net based RTM with surface multiple (RTMM-CNN)

𝐦∗ = 𝚪 𝐦 = 𝚪 (𝐋 𝐝)

• The network operator acts similar as the least-squares reverse time migration. 

• For LSRTM, the solution is derived from the minimum difference between true and migrated images. 

The formal solution is: 𝚪 : the inverse Hessian𝐦 : the migrated image
(6)
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A modified U-Net based RTM with surface multiple (RTMM-CNN)

𝐦∗ = 𝚪 𝐦 = 𝚪 (𝐋 𝐝)

𝐦 = 𝚪 (𝐦 ,𝐦 )

MSE =  1𝑛 ||𝐦 −𝐦 ||

• The network operator acts similar as the least-squares reverse time migration. 

• For LSRTM, the solution is derived from the minimum difference between true and migrated images. 

The formal solution is:

• Similarly, based on Ronneberger et al. (2015), this modified U-Net can be used as an alternative way 
of inverse Hessian to determine the imaging result. 

• The mean squared error (MSE) loss: 

𝚪 : the inverse Hessian𝐦 : the migrated image

𝚪 : the multilayer CNN and 

skip connections𝐦 : the RTMM initial image𝐦 is the background velocity 

(6)

(7)

(8)
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Modified U-Net
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Train and test set

• Sigsbee2b, Amoco, Agbami, Pluto, BP2004 and Marmousi as the origin input set 

• A fourth-order finite difference method is used for the forward modeling

• Baseline model: RTM-CNN 

• Before training, the whole RTM and RTMM images are partly chosen and divided 

randomly into 2100 spatial windows with 256x256 points

• The ratio of train and test set is 0.8: 0.2

• All the output predictions have normalized scaling
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Numerical examples

• Pluto model

• Marmousi model

• Foothill model (not used as our training or testing data)
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Numerical Example 1 – Pluto Model

• 1234x401 gridpoints
• dx = dz = 8 meters 
• t = 7.2 seconds with dt = 0.8 milliseconds 
• ds = 80 meters, dg = 16 meters; ns = 122, ng = 615
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Numerical Example 1 – Pluto Model

RTM-CNN RTMM-CNN
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Numerical Example 1 – Pluto Model

RTM-CNN RTMM-CNNTrue Label
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Numerical Example 1 – Pluto Model

RTM-CNN RTMM-CNNTrue Label
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Numerical Example 2 – Marmousi Model

• 1942x400 gridpoints
• dx = dz = 8 meters 
• t = 7.2 seconds with dt = 0.8 milliseconds 
• ds = 80 meters, dg = 16 meters; ns = 193, ng = 970
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Numerical Example 2 – Marmousi Model

RTM-CNN RTMM-CNN



21

Numerical Example 2 – Marmousi Model

RTM-CNN RTMM-CNNTrue Label
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Numerical Example 2 – Marmousi Model

RTM-CNN RTMM-CNNTrue Label
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Numerical Example 3 – Foothill Model

• 1600x1000 gridpoints
• dx = dz = 8 meters 
• t = 7.2 seconds with dt = 0.8 milliseconds 
• ds = 80 meters, dg = 16 meters; ns = 99, ng = 798
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Numerical Example 3 – Model tested on the Foothill Model with an accurate velocity input

RTM-CNN RTMM-CNN
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Numerical Example 3 – Model tested on the Foothill Model with an accurate velocity input

RTM-CNN RTMM-CNNTrue Label
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Numerical Example 3 – Model tested on the Foothill Model with an accurate velocity input

RTM-CNN RTMM-CNNTrue Label
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Numerical Example 4 – Model tested on the Foothill Model with a smoothed velocity input

RTM-CNN RTMM-CNN
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RTM-CNN RTMM-CNNTrue Label

Numerical Example 4 – Model tested on the Foothill Model with a smoothed velocity input
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RTM-CNN RTMM-CNNTrue Label

Numerical Example 4 – Model tested on the Foothill Model with a smoothed velocity input
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Model Performance Evaluation
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Consideration – model dependence on the input background velocity model

Test 1: apply a larger gaussian smooth filter with 𝜎 = 10 and 𝜎 = 15
• To check if this proposed model depends heavily on the input background velocity model:

Test 2: remove the background velocity model completely

• Peak signal-to-noise ratio (PSNR) is used to evaluate the model performance:

PSNR = 20 ∗ log (MAXMSE) (9)
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Test 1: Using a more smoothed background velocity model

RTM-CNN RTMM-CNN

PSNR = 24.68 PSNR = 25.05
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Test 2: Removing the background velocity input

RTM-CNN RTMM-CNN

PSNR = 24.54 PSNR = 25.00
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Test 2: Removing the background velocity input

RTM-CNN RTMM-CNN

PSNR = 24.54 PSNR = 25.00
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Conclusion and Future Work

• Both RTM-CNN and RTMM-CNN can have some tolerance on the initial background 
velocity model.

• RTMM-CNN can recover major structures and thin layers with higher resolution and 
improved accuracy compared with RTM-CNN.

• The next step is to let the model learn how to predict a steady reflectivity when given a 
more smoothed input and field data.

• Find a way to improve the model performance on the shadowed zone.
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