

Reducing the influence of remnant noises on FWI with misfit modification

Luping Qu, Xin Fu, Scott Keating, Kris Innanen

December 2021

Normal Distribution Probability Density Function

$$L\left(\mathbf{d}|\mathbf{m}\right) = \frac{1}{\sqrt{(2\pi)^{N}|\mathbf{C}_{\mathbf{d}}|}} \exp\left(-\frac{1}{2}\mathbf{r}^{T}\mathbf{C}_{\mathbf{d}}^{-1}\mathbf{r}\right)$$

٠

Misfit function in FWI

$$E = \begin{bmatrix} (\mathbf{d}_{\text{pre}} - \mathbf{d}_{\text{obs}})^T (\mathbf{d}_{\text{pre}} - \mathbf{d}_{\text{obs}}) \end{bmatrix}$$
$$\mathbf{r}^T \mathbf{r}$$

 d_{obs} as "true data", but actually noisy

Modified misfit function

$$E = \frac{1}{2N} \left[\left(\mathbf{d}_{\text{pre}} - \mathbf{d}_{\text{obs}} \right)^T \mathbf{C}_{\text{D}}^{-1} \left(\mathbf{d}_{\text{pre}} - \mathbf{d}_{\text{obs}} \right) \right].$$

The gradient of the objective function

$$\frac{\partial \mathbf{E}(\mathbf{m})}{\partial m_i} = \frac{1}{N} \left(\frac{\partial \mathbf{d}_{\text{pre}}}{\partial m_i} \right)^T \mathbf{C}_{\text{D}}^{-1} \left(\mathbf{d}_{\text{pre}} - \mathbf{d}_{\text{obs}} \right).$$

The artifacts generated by matching seismic data with low SNR will be down weighted, improving the quality of imaging.

1 Estimation of data covariance matrix

$$c_j = \frac{1}{N} \sum_{k=0}^{N-j-1} \left(\mathbf{d}_{j+k} - \bar{\mathbf{d}} \right) \left(\mathbf{d}_k - \bar{\mathbf{d}} \right).$$

Inversion results of the 1st FWI \approx Sample mean \bar{r}

2 Dimension of covariance matrix

Frequency domain:

(Nf*Nr*Ns)*(Nf*Nr*Ns)

Research questions:

Acoustic FWI in time domain

Random noise

Correlated noise

Seismic data with random noises (d_obs)

Inversion results

Acoustic FWI in time domain

Random noise

Correlated noise

Generation of correlated noise

Seismic data with correlated noises

1st FWI inversion result

Resampling in frequency domain

2nd FWI inversion result

Distance (km)

Trace comparison for the 1st inversion

Trace comparison for the 2nd inversion

True noise and estimated noise

Random noise

Correlated noise

Seismic data with random noises (d_obs)

Inversion result of seismic data with different SNR (random noises)

1st FWI inversion result

True model

Inverted model of noise-free data

Inverted model of data with noisy data SNR=16dB

Seismic data in frequency domain

Data residuals

Data covariance matrices

Inversion results

Random noise

Correlated noise

Seismic data in frequency domain

Data residuals and data covariance matrices

Inverted vp

Inversion results

1st inversion results

Inverted rho

20 iterations

Inverted vs

- Inversion algorithm is more resistant to the influence of random noises.
- The influence can be ignored if the random noise magnitude is within 20 percent of the true data.
- FWI with modified misfit can better estimate the random and correlated noises in the observing data by incorporating the data covariance matrix.
- The new method can yield better imaging with less artifacts.

Further study

- Field data tests need to be conducted to examine the effectiveness of the method.
- Local minimum.

Jan Dettmer, Ninoska

NSERC (Grant CRDPJ 461179-13, CRDPJ 543578-19)

CREWES sponsors

SEG

CREWES faculty, staff and students

Modified misfit function

$$E = \frac{1}{2N} \left[\left(\mathbf{d}_{\text{pre}} - \mathbf{d}_{\text{obs}} \right)^T \mathbf{C}_{\text{D}}^{-1} \left(\mathbf{d}_{\text{pre}} - \mathbf{d}_{\text{obs}} \right) \right].$$

The gradient of the objective function

$$\frac{\partial \mathbf{E}(\mathbf{m})}{\partial m_i} = \frac{1}{N} \left(\frac{\partial \mathbf{d}_{\text{pre}}}{\partial m_i} \right)^T \mathbf{C}_{\text{D}}^{-1} \left(\mathbf{d}_{\text{pre}} - \mathbf{d}_{\text{obs}} \right).$$

The artifacts generated by matching seismic data with low SNR will be down weighted, improving the quality of imaging.

2nd FWI inversion result

Modified misfit function

$$E = \frac{1}{2N} \left[\left(\mathbf{d}_{\text{pre}} - \mathbf{d}_{\text{obs}} \right)^T \mathbf{C}_{\text{D}}^{-1} \left(\mathbf{d}_{\text{pre}} - \mathbf{d}_{\text{obs}} \right) \right].$$

The gradient of the objective function

$$\frac{\partial \mathbf{E}(\mathbf{m})}{\partial m_i} = \frac{1}{N} \left(\frac{\partial \mathbf{d}_{\text{pre}}}{\partial m_i} \right)^T \mathbf{C}_{\text{D}}^{-1} \left(\mathbf{d}_{\text{pre}} - \mathbf{d}_{\text{obs}} \right).$$

The artifacts generated by matching seismic data with low SNR will be down weighted, improving the quality of imaging.

Inverted vp

Inversion results

1st inversion results

Inverted rho

20 iterations

Inverted vs

