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Introduction

 The injection of CO2 into underground rocks for long-term storage is considered
as an effective way to reduce greenhouse gas emissions.

 Time-lapse seismic data can be used to monitor the injected CO2 and warn
leakage problem if any.

 For reliable conformance verification, the monitoring should provide quantitative
information on CO2 saturation to be compared to reservoir modeling predictions.
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Introduction

 Time-lapse seismic

Fluid saturation (t) Elastic properties (t) Seismic response (t)

Pore pressure (t)

Pre-injection survey: 1994

Post-injection survey:
1999, 2001, 2002, 2004, 2006, 2008
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 Time-lapse seismic

Fluid saturation (t) Elastic properties (t) Seismic response (t)

Seismic image of the growing CO2 plume at Sleipner
(Queißer and Singh, 2012) 
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 Time-lapse seismic

Fluid saturation (t) Elastic properties (t) Seismic response (t)

 Multiples

 Thin-layer tunning

 Attenuation

 Velocity pushdown

Complex wave propagation effects:
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Introduction

 Time-lapse seismic

Fluid saturation (t) Elastic properties (t) Seismic response (t)

 Higher resolution

 Comparison in parameter space

 Quantify time-lapse changes

Motivations to use FWI:

Acoustic FWI result
(Queißer and Singh, 2012) 
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 Time-lapse seismic

Fluid saturation (t) Elastic properties (t) Seismic response (t)

Rock physics interpretation

CO2 saturations
(Queißer and Singh, 2012) 
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Baseline data Monitor data

Baseline Vp Monitor Vp

FWI FWI

Initial

Gassmann’s 
equation

(Queißer and Singh, 2012) 

Time-lapse inversion to quantify CO2
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Introduction

Baseline data Monitor data

Baseline Vp Monitor Vp

FWI FWI

Gassmann’s 
equation

(Dupuy, 2021) 

Input

Time-lapse inversion to quantify CO2
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Baseline data Monitor data

AVO AVO

Soft-sand model

(Grana, 2020) 

Input

Time-lapse inversion to quantify CO2

One-step 
inversion
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Introduction

Baseline data Monitor data

FWI FWI

The proposed method

Input

Time-lapse inversion to quantify CO2
Direct rock physics FWI (Hu et al, 

2021)
• Allows examination of any rock 

physics property that has a well-
defined relationship with elastic 
parameters; 

• Leads to a more stable solution 
compared to the sequential 
inversion;

• Shares the same numerical structure 
as the conventional EFWI

One-step 
inversion
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Methods

 Elastic FWI with rock physics parameterizations

mr: Reservoir propertiesme: Elastic properties

f: Wave propagation model g: rock-physics model

(e.g., Porosity, Lithology, fluid saturations)(e.g., Velocity, density, modulus)

How to implement:
(2D frequency-domain)

(Hu et al, 2021)
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Methods

 Rock physics model

Stiff-sand model:

Solid phase (            ) Dry rock at
(Voigt-Reuss-Hill) (Hertz-Mindlin)

Two endpoints

Interplolate using Hashin-Strikman upper bounds

Gassmann’s equation:
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Methods

 Rock physics FWI in the time-lapse model

Baseline model reconstruction (P and C)

Monitor model reconstruction (Sc)

Rock type: two mineral components (quartz and clay) ; two fluid components (water and CO2)

Model parameterization: porosity (P), clay content (C), CO2 saturation (Sc) 

Objective 
function:

Objective 
function:

Time-lapse strategies:
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Numerical examples

 The Johansen Formation Model

Bergmo (2010) Grana (2020)

Porosity: 

Simulated CO2
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Numerical examples

 2D version

Original model (sparse samples)

Created model (regular grid, 76×81, dx=dz=10 m) 
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Numerical examples

 Baseline model reconstruction
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Numerical examples

 Initial models: realistic in terms of assumptions of what we know

1. Subsample the true model and interpolate on the original grid
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Numerical examples

 Initial models

2. filter the true model of velocity and apply a linear regression for porosity.

The well data at x=0.4 km are used to 
build  a velocity-porosity relationship

filter

Regression
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

0

0.05

0.1

0.15

0.2

0.25

0.3
well data
linear regression



23

Numerical examples

 Initial models

3. Set constant rock physics properties in each layer (assuming the exact horizons are known).
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Numerical examples

 3 initial models
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Numerical examples

 Inverted models starting from the 3 initial models
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Numerical examples

 Comparison between the inversion results
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Numerical examples

 Inverted models with noisy data (S/R=10) Used as input in the monitor survey
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Numerical examples

 Monitor model reconstruction

Objective 
function:

Uncertainties in the estimation of CO2
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Numerical examples

 How errors in baseline model estimates affect the estimation of CO2

Reference 1: Poorly estimated Reference 2: Perfectly estimated
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Numerical examples

 How do errors in baseline model estimates affect the estimation of CO2



31

Numerical examples

 Errors in baseline model estimates + random noise effects

S/R=20 S/R=10 S/R=5
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Numerical examples

mt

Data misfit

0

Noise-free

mt’

Noisy

+
Model misfit

mt’’
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Numerical examples

Objective function

Regularization

Data misfit Model penalty

First-order Tikhonov 
regularization:

First-order spatial derivative operators

This regularization assumes that neighboring points in the model should be close in value, 
leading to smooth solutions.
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Numerical examples

 Errors in baseline model estimates + random noise effects

S/R=20 S/R=10 S/R=5

Enforcing 
smoothness

Unconstrained
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Numerical examples

Objective function

Regularization

Data misfit Model penalty

Prior model constraint:

Sometimes we have a very good reference (or prior) model, and we do not want the inverted model to 
deviate much from the prior model

Prior modelWeighting matrix
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Numerical examples

Prior model constraint:

Prior model

Prior modelTrue model
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Numerical examples

 Errors in baseline model estimates + random noise effects

S/R=20 S/R=10 S/R=5

Prior model
Constraint

Unconstrained
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Numerical examples

 Errors in baseline model estimates + random noise effects

S/R=20 S/R=10 S/R=5

Smoothness+
Prior model
Constraints

Unconstrained
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True Errors in baseline models Errors in baseline models + random noise

Smoothness constraint Prior model constraint Smoothness + prior model constraints

Summary in this part 
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Summary of inversion results

True

Recovered
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Summary

 We present an FWI method for the prediction of porosity, lithology and 
time-dependent CO2 saturation values from seismic data.

 We show that the errors in baseline model estimates and random noise effects 
both compromise the estimation of CO2 .

 We show that imposing model constraints, such as smoothness and prior model, 
can improve the result.
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