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Introduction

 The injection of CO2 into underground rocks for long-term storage is considered
as an effective way to reduce greenhouse gas emissions.

 Time-lapse seismic data can be used to monitor the injected CO2 and warn
leakage problem if any.

 For reliable conformance verification, the monitoring should provide quantitative
information on CO2 saturation to be compared to reservoir modeling predictions.
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Introduction

 Time-lapse seismic

Fluid saturation (t) Elastic properties (t) Seismic response (t)

Pore pressure (t)

Pre-injection survey: 1994

Post-injection survey:
1999, 2001, 2002, 2004, 2006, 2008
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Introduction

 Time-lapse seismic

Fluid saturation (t) Elastic properties (t) Seismic response (t)

Seismic image of the growing CO2 plume at Sleipner
(Queißer and Singh, 2012) 
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Introduction

 Time-lapse seismic

Fluid saturation (t) Elastic properties (t) Seismic response (t)

 Multiples

 Thin-layer tunning

 Attenuation

 Velocity pushdown

Complex wave propagation effects:
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Introduction

 Time-lapse seismic

Fluid saturation (t) Elastic properties (t) Seismic response (t)

 Higher resolution

 Comparison in parameter space

 Quantify time-lapse changes

Motivations to use FWI:

Acoustic FWI result
(Queißer and Singh, 2012) 
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Introduction

 Time-lapse seismic

Fluid saturation (t) Elastic properties (t) Seismic response (t)

Rock physics interpretation

CO2 saturations
(Queißer and Singh, 2012) 
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Introduction

Baseline data Monitor data

Baseline Vp Monitor Vp

FWI FWI

Initial

Gassmann’s 
equation

(Queißer and Singh, 2012) 

Time-lapse inversion to quantify CO2



10

Introduction

Baseline data Monitor data

Baseline Vp Monitor Vp

FWI FWI

Gassmann’s 
equation

(Dupuy, 2021) 

Input

Time-lapse inversion to quantify CO2
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Introduction

Baseline data Monitor data

AVO AVO

Soft-sand model

(Grana, 2020) 

Input

Time-lapse inversion to quantify CO2

One-step 
inversion
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Introduction

Baseline data Monitor data

FWI FWI

The proposed method

Input

Time-lapse inversion to quantify CO2
Direct rock physics FWI (Hu et al, 

2021)
• Allows examination of any rock 

physics property that has a well-
defined relationship with elastic 
parameters; 

• Leads to a more stable solution 
compared to the sequential 
inversion;

• Shares the same numerical structure 
as the conventional EFWI

One-step 
inversion
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Methods

 Elastic FWI with rock physics parameterizations

mr: Reservoir propertiesme: Elastic properties

f: Wave propagation model g: rock-physics model

(e.g., Porosity, Lithology, fluid saturations)(e.g., Velocity, density, modulus)

How to implement:
(2D frequency-domain)

(Hu et al, 2021)
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Methods

 Rock physics model

Stiff-sand model:

Solid phase (            ) Dry rock at
(Voigt-Reuss-Hill) (Hertz-Mindlin)

Two endpoints

Interplolate using Hashin-Strikman upper bounds

Gassmann’s equation:
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Methods

 Rock physics FWI in the time-lapse model

Baseline model reconstruction (P and C)

Monitor model reconstruction (Sc)

Rock type: two mineral components (quartz and clay) ; two fluid components (water and CO2)

Model parameterization: porosity (P), clay content (C), CO2 saturation (Sc) 

Objective 
function:

Objective 
function:

Time-lapse strategies:
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Numerical examples

 The Johansen Formation Model

Bergmo (2010) Grana (2020)

Porosity: 

Simulated CO2
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Numerical examples

 2D version

Original model (sparse samples)

Created model (regular grid, 76×81, dx=dz=10 m) 
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Numerical examples

 Baseline model reconstruction
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Numerical examples

 Initial models: realistic in terms of assumptions of what we know

1. Subsample the true model and interpolate on the original grid
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Numerical examples

 Initial models

2. filter the true model of velocity and apply a linear regression for porosity.

The well data at x=0.4 km are used to 
build  a velocity-porosity relationship

filter

Regression
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Numerical examples

 Initial models

3. Set constant rock physics properties in each layer (assuming the exact horizons are known).
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Numerical examples

 3 initial models
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Numerical examples

 Inverted models starting from the 3 initial models
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Numerical examples

 Comparison between the inversion results
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Numerical examples

 Inverted models with noisy data (S/R=10) Used as input in the monitor survey
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Numerical examples

 Monitor model reconstruction

Objective 
function:

Uncertainties in the estimation of CO2
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Numerical examples

 How errors in baseline model estimates affect the estimation of CO2

Reference 1: Poorly estimated Reference 2: Perfectly estimated
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Numerical examples

 How do errors in baseline model estimates affect the estimation of CO2
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Numerical examples

 Errors in baseline model estimates + random noise effects

S/R=20 S/R=10 S/R=5
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Numerical examples

mt

Data misfit

0

Noise-free

mt’

Noisy

+
Model misfit

mt’’
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Numerical examples

Objective function

Regularization

Data misfit Model penalty

First-order Tikhonov 
regularization:

First-order spatial derivative operators

This regularization assumes that neighboring points in the model should be close in value, 
leading to smooth solutions.
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Numerical examples

 Errors in baseline model estimates + random noise effects

S/R=20 S/R=10 S/R=5

Enforcing 
smoothness

Unconstrained
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Numerical examples

Objective function

Regularization

Data misfit Model penalty

Prior model constraint:

Sometimes we have a very good reference (or prior) model, and we do not want the inverted model to 
deviate much from the prior model

Prior modelWeighting matrix
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Numerical examples

Prior model constraint:

Prior model

Prior modelTrue model
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Numerical examples

 Errors in baseline model estimates + random noise effects

S/R=20 S/R=10 S/R=5

Prior model
Constraint

Unconstrained
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Numerical examples

 Errors in baseline model estimates + random noise effects

S/R=20 S/R=10 S/R=5

Smoothness+
Prior model
Constraints

Unconstrained
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True Errors in baseline models Errors in baseline models + random noise

Smoothness constraint Prior model constraint Smoothness + prior model constraints

Summary in this part 
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Summary of inversion results

True

Recovered
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Summary

 We present an FWI method for the prediction of porosity, lithology and 
time-dependent CO2 saturation values from seismic data.

 We show that the errors in baseline model estimates and random noise effects 
both compromise the estimation of CO2 .

 We show that imposing model constraints, such as smoothness and prior model, 
can improve the result.
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