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Presentation Overview 

Interactive web app 

Old method: analytic 

interpretation, curve 

fitting derivatives  

9200 PSI 

(1% error) 

9140 PSI 

(0.03% error) 

9075 PSI 

(0.9% error) 

New unsupervised 

clustering method 

• Save time 

• Eliminate bias 

From Sullivan et al. (2019)
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What is a DFIT? Why is it Important?

Adapted from Cramer and Nguyen (2013)

• DFIT (Diagnostic fracture injection test) 

• Information in unconventional reservoirs 

about: 

o Instantaneous shut-in pressure (ISIP)

o Shmin

o Reservoir pressure 

• Leads to inferences about “fracability” of 

reservoir, stress regime, economics. 

Important geologic information in DFIT, how can we efficiently interpret 

the data? 
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DFIT’s : Calibration Datasets From the TOC Group 

ISIP

Contact pressure (compliance method)

Closure pressure (tangent line method)

Reservoir pressure

Subtle variations hold important geologic information 

How are these events picked on a curve 

with little apparent variation? 

Analytic engineering method: time consuming 

and human bias 

Idea: Could a unsupervised clustering method 

pick up on these variations save time and

eliminate bias? 
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From Sullivan et al. (2019)
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Clustering Methods Evaluated 

https://www.displayr.com/what-is-hierarchical-

clustering/#:~:text=Hierarchical%20clustering%2C%20also%20known%20as,broadly%20similar%20to%20each%20other.

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-25-22-27570&id=375887

DB scan: density based- handles odd distributions + noise 

https://www.analyticsvidhya.com/blog/2019/1

0/gaussian-mixture-models-clustering/https://www.researchgate.net/figure/An-Example-Illustrating-the-Density-Based-DBSCAN-Clustering-Method-Applied-to-SMLM-

Data_fig4_342141592

Gaussian: probabilistic, set model distribution

Hierarchical: clustering dendrogram makes 

easy to determine number of clusters
K-means: centroid based, general method
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CREWES DFIT Interpretation APP 

Complex variable relations: correlation matrix 
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High-Level Overview – Unsupervised DFIT Event Detection

Clustering Methods 

Evaluated: 

• K-means

• DB-scan

• Hierarchical

• Gaussian mixture

2) Hyperparameter 

optimization (# of cluster, 

search radius, etc.) 

• Elbow method 

• Dendrogram

• Scaling vs no 

scaling 

• Additional 

derivative data 

(G-time, Agarwal 

time, first and 

second order 

derivatives) 

1) Clustering variable 

Optimization

4) Field Data Test  
Calibration Datasets 

(Known ISIP, Contact, 

Closure, Reservoir 

pressures) 

• Duvernay single layer 

model (TOC Group) 

• Duvernay multilayer (TOC 

group) 

• Percentage of events 

identified

• Unidentifiable points (no 

interpretation)

• Repeatability of point

3) Metrics of Evaluation 

5) Investigation of cluster picking

• Visual inspection

• Principle component 

analysis (PCA)

DFIT App Inputs 
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Clustering Variable Optimization  

“Simple” pressure and 

time data creates multiple 

derivative curves

Mathematical 

operation

Scaled app 

data clustering 

input

App allows for testing 

different variable 

combinations

Quick interactive visualization
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Variable Optimization: PCA Correlation Circle

Clusters of correlated variables 

Time

Agar_df

Td/dt

d/dt

Collective clustering of all variables gives generalized version of all events 

Late time information variables 

Late/early time information variables Early time information variables 

G* Slope g-time

Slope g-time

G-time

Time, pressure, first derivative, 

t*df1, second df – 6clusters
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Hyperparameter Optimization

Cluster Method 10500-10001 10000-9500 PSI 9499-9000 8999-8500 8499-8000 7999 -7500PSI 7499-7000PSI 6999-6500PSI 6499 - 6001 PSI 6000-5001 PSI 5000-4900PSI 4900-4800PSI4800-4780PSI4780-4760PSI4760-4740PSI

DB-Scan 3min, 10radi 9 values 8860, 8770 10clusters

DB-Scan 3min, 20radi 10315, 10249 8685, 8532 8347 5 clusters

DB-Scan 3min, 30radi 8281 7241, 7099 3 clusters

DB-Scan 3min, 40radi 8281 7310, 7075 3 clusters

DB-Scan 3min, 50radi no change 8228 7398, 7065 3 clusters

DB-Scan 3min, 60radi 8159 7508 7057 3 clusters

DB-Scan 3min, 100radi 7042 2 clusters

DB-Scan 3min, 200radi 1 cluster

DB-Scan 4min, 10radi 7 values 2 values 8836, 8700 8403 10Clusters

DB-Scan 4min, 20radi 10342, 10275 8741, 8532 8367 4 clusters

DB-Scan 4min, 30radi 10275 8685, 8552 8319 4 clusters

DB-Scan 4min, 40radi 8641, 8574 8281 3 clusters

DB-Scan 4min, 50radi 8281 7200, 7100 3 clusters Transition of cluster area 

DB-Scan 4min, 60radi 8281 7283, 7086 3 clusters

DB-Scan 4min, 100radi 8076 7500 7057 3 clusters

DB-Scan 6min, 200radi 7036 2 clusters Larger radii converge to reservoir pressure, until no clusters picked 

**** Optimal performance

DB-Scan 5min, 10radi 2 values 4 values 8836, 8770 8457, 8415 10clusters

DB-Scan 5min, 20radi 10342, 10249 8757, 8532 8382 4 clusters

DB-Scan 5min, 30radi 10342, 10275 8724, 8552 8319 4 clusters

DB-Scan 5min, 40radi 8664, 8574 8319 3 clusters

DB-Scan 5min, 50radi 8281 2 clusters only single value, Converged? 

DB-Scan 5min, 60radi 8281 7241 7099 3 clusters

DB-Scan 5min, 100radi 8159 7450 7065 3 clusters

DB-Scan 5min, 200radi 7042 2 clusters Larger radii converge to reservoir pressure, until no clusters picked 

DB-Scan 6min, 10radi 10530 10438, 10391, 10157, 101179901, 9849, 9814, 9783 8833, 8782 8410 10clusters

DB-Scan 6min, 20radi 10438, 10343, 10224, 10178, 10031 8770, 8514 8394 7 clusters

DB-Scan 6min, 30radi 10315, 10249 8741, 8532 8347 5 clusters

DB-Scan 6min, 40radi 10294 8705, 8552 8319 4 clusters

DB-Scan 6min, 50radi 8664, 8596 8281 3 clusters

DB-Scan 6min, 60radi 8619 8281 3 clusters Converge to closure and ISIP ? 

DB-Scan 6min, 100radi 8159 7398 3 clusters

DB-Scan 6min, 200radi 7892, 7803 7042 3 clusters Converge to reservoir Pressure? 

DB-Scan 20min, 10radi 8950, 8918, 8905, 8875, 8810 8423 6 clusters

DB-Scan 20min, 20radi 10500 9401, 9324 8792 8468, 8394 5 clusters

DB-Scan 20min, 30radi 10438, 10374 9782, 9667 8770 8492, 8367 6 clusters

DB-Scan 20min, 40radi 10342,  9969, 9845  8741, 8514 8347 5 clusters

DB-Scan 20min, 50radi 10342, 10203, 10019 8724, 8532 8319 5 clusters

DB-Scan 20min, 60radi 10242 7705, 8552 8319 4 clusters

DB-Scan 20min, 100radi 8619 8228 3 clusters Best vonvergence oin ISIP and Closure pressure 

DB-Scan 20min, 200radi 8076 2 clusters

DB-Scan 20min, 400radi 7642 7057 3 clusters  Higher search radius for later events in curve (more subtle) 

TOC Values 8600 (ISIP) 8400 (contact) 8300 (closure ) 7000 (reservoir) 

• Implementation of elbow method, iterations 

through parameters to find best convergence  

Selected variables

Try 6 

clusters

Manipulate hyper parameters 

and investigate 
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Metrics of Evaluation: Best Clustering Method Ranked (Models)  
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Metric 

Best Performing Clustering Method For Each Metric  

K-means Hierarchical DB Scan Gaussian

• DB scan appears to be 

an optimal performer 

• Hierarchical Clustering 

produces least noise 

9200 PSI 

(1% error) 

9140 PSI 

(0.03% error) 

9075 PSI 

(0.9% error) 

Dbscan: 0.04 sear radii, 6 min points 

9075 PSI 

(0.9% error) 

9350 PSI 

(0.6% error)
8384 PSI 

(2% error)

Hierarchical (6 clusters – Ward D) 

“Noise points” 



17

Field Test: Gaussian Method Outperforms DB-scan
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K-means Hierarchical DB Scan Gaussian

• Gaussian (VEE) - Ellipsoidal, equal shape and orientation appears to outperform DB scan in this 
scenario

• Probabilistic nature of Gaussian methods can handle noise? 

Switch in optimal clustering method  

Additional 

boundaries? 

Field Test: Gaussian Method
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Mathematical Relation - All Parameter Clustering -6clusters K-means 
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Principle Component Scree Plot – Reducing Dimensions 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Reduced 2 dimensions 

captures ~70% of the 

variation 

Reduced 3 dimensions captures 

~81% of the variation 

Input parameters 
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Understanding the Mathematics: 

1) 2D Inflection/change in slope 

creating a variation in point density 

(new cluster) 

2) 3D Inflection/change in slope 

creating a variation in point density 

(new cluster) 

3) Change in natural oscillation of 

data -> variation in point density
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Conclusions and Ideas: 

• Shiny apps provide a quick method of optimizing and visualizing machine learning 

applications

• ~6 clusters appear to capture data variation for K-means, DB-scan and Hierarchical 

methods 

• Incorporation of derivative curves and scaling appears to help algorithms pick more events 

(although more accurate localized results maybe achieved by using fewer curves). 

• DB scan appears to have a best performance on modeled data, however, when introduced 

to field data, the Gaussian mixture model appears to outperform

▪ Apply a Fast Fourier Transform to data to filter it? 

• Cluster boundary related to a combination of natural oscillation, inflection, maxima/ 

minima creating variation in point density and therefore cluster position. 
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