

Multiparameter FWI of ultrasound data

Scott Keating, Kris Innanen and Joe Wong

December 2nd 2022

- Buzzer sources and receivers (~10 – 130 kHz)
- Cylindrical targets
- In-plane surround acquisition

Raw data – no target

Raw data – no target

Raw data – no target

Raw data – difference

Raw data – difference

- Amplitude correction (3D to 2D)
- Muting of edge reflections
- Heavier processing flows didn't improve results

Processed data – no target

Processed data – target

Processed data – difference

- FWI on 8 frequency bands, 10 iterations per band
- Inversion for v_P and density
- Water velocity starting model

P-wave velocity

Density

P-wave velocity

Long wavelength match ✓

Short wavelength match ×

Long wavelength match ×

Short wavelength match *****

Density 1300 -150 1200 -100 1100 -50 Y-Position (mm) Density (kg/m³) 1000 0 50 900 100 800 150 700 -150 -100 -50 50 100 150 n

X-position (mm)

Density estimates can be improved with information from velocity

We generally have high confidence of **geometric similarity** between parameters

Penalizing the **cross-product** of the **spatial gradient** of parameters promotes parallel or zero-amplitude contrasts

Regularized inversion

P-wave velocity

Density

Cross-gradients

Unregularized

Regularized

Longer recording times for reflections could help improve short-scale features

Inconsistencies and asymmetries in the data confuse the inversion

Some of these issues may be helped by alternate processing

New tests in the bigger tank

Full-waveform inversion seems to provide accurate results at long to medium wavelengths

Cross-gradient regularization can significantly stabilize density estimates

Longer recording times may be needed for improved results

- CREWES sponsors, staff and students
- CFREF

