

Time-lapse FWI prediction of CO_2 saturation and pore pressure

Qi Hu and Kris Innanen

CREWES Annual Meeting Dec 1, 2022

- Quantitative estimation of saturation and pressure is important for conformance verification of CO₂ storage.
- Pressure-saturation discrimination from seismic amplitude. Landrø (2001), Meadows (2001), Trani et al. (2011), Grana and Mukerji (2019)...
- FWI prediction of time-dependent CO₂ saturation. Queißer and Singh (2012), Dupuy et al. (2021), Hu et al. (2022)

Considerations for the rock physics model

- Time-lapse FWI framework
- Numerical example

• Overburden pressure:

$$P_c = g \int_0^z \rho(z') dz',$$

• Pore pressure (if hydrostatic):

 $P_p = \rho_w g z$

• Effective pressure:

$$P_e = P_c - \lambda P_p,$$

Landrø (2001)
$$\frac{\Delta V_{\rm P}}{\overline{V}_{\rm P}} = a\Delta S + b\Delta P_e^{\ 2} + c\Delta P_e$$

Eberhart-Phillips (1989) $V_{\rm P} = a + b\phi + c\sqrt{V_{\rm clay}} + d(P_e - \exp(-kP_e))$

Hertz–Mindlin (1949)
$$K_{dry} = \sqrt[3]{X(\phi, V_{clay})P_e},$$

Macbeth (2004)
$$K_{dry} = \frac{K^{\infty}}{1 + A_K e^{-\frac{P_e}{P_K}}},$$

Pressure model

Modified Macbeth model (Grana, 2016)

$$K_{dry}(P_e) = \frac{K^{\infty}}{1 + \frac{K^{\infty} - K_0}{K_0}} e^{-\frac{P_e - P_0}{P_K}};$$

$$K^{\infty} = \lambda_1 (\phi + aV_{clay}) + \lambda_2,$$

$$\int$$

self-similarity

Saturation & Pressure dependence of Elastic Properties

Gassmann's equation:

$$K_{\rm sat}(S_{\rm co_2}, P_p) = K_{\rm dry}(P_p) + \frac{[1 - K_{\rm dry}(P_p)/K_m]^2}{\phi/K_f(S_{\rm co_2}, P_p) + (1 - \phi)/K_m - K_{\rm dry}(P_p)/K_m^2}$$

 $G_{\rm sat}(P_p) = G_{\rm dry}(P_p)$

$$\rho_{\text{sat}}(S_{\text{co}_2}, P_p) = (1 - \phi)\rho_m + \phi\rho_f(S_{\text{co}_2}, P_p)$$

Steps of rock physics modeling		
Solid phase:	$K_m = f(K_q, K_c, V_{\text{clay}})$	Voigt-Reuss-Hill
Fluid phase:	$K_{\rm co2,w} = f(T, P_p)$ $K_f = f(K_{\rm co2}, K_w, S_{\rm co2})$	Baztle-Wang Brie
Dry rock:	$K_0 = f(K_m, \phi, P_0)$ $K_{dry}(P_e) = f(K_0, P_0, P_e)$	Hertz-Mindlin Modified MacBeth
Saturated rock:	$K_{\text{sat}} = f(K_m, K_f, K_{\text{dry}}, \phi)$	Gassmann
	$(V_{\rm P}, V_{\rm S}, \rho) = f(\phi, V_{\rm clay}, S_{\rm co2}, P_p)$	

Three samples Porosity+0.3*Vclay 5 • 0.27 4.5 Vp (km/s) 4 0.2 3.5 0.11 3 10 20 30 40 5 Effective Pressure (MPa)

Model calibration

Model calibration

Model calibration

Sensitivity analysis

- Considerations for the rock physics model
- Time-lapse FWI framework
- Numerical example

General problem

f: Wave propagation model
$$g$$
: rock-physics model
 $\mathbf{d} = f(\mathbf{m}_e) + \mathbf{n} = f(g(\mathbf{m}_r)) + \mathbf{n}$
 \mathbf{m}_e : Elastic properties \mathbf{m}_r : Reservoir properties

• FWI incorporating rock physics model

$$\frac{\partial \mathbf{A}}{\partial r_i} = \frac{\partial \mathbf{A}}{\partial e_1} \frac{\partial e_1}{\partial r_i} + \frac{\partial \mathbf{A}}{\partial e_2} \frac{\partial e_2}{\partial r_i} + \frac{\partial \mathbf{A}}{\partial e_3} \frac{\partial e_3}{\partial r_i},$$
$$(e_1, e_2, e_3) = g(r_1, r_2, ..., r_N)$$

(Hu et al, 2021)

1. Baseline model reconstruction (ϕ , V_{clay})

$$E_b = \left\| \mathbf{d}_{\text{obs_b}}(\phi^t, V_{\text{clay}}^t) - \mathbf{d}_{\text{syn_b}}(\phi, V_{\text{clay}}) \right\|_2,$$

2. Monitor model reconstruction (S_{co2} , P_p)

$$E_m = \left\| \mathbf{d}_{\text{obs_m}}(\phi^t, V_{\text{clay}}^t, S_{\text{co2}}^t, P_p^t) - \mathbf{d}_{\text{syn_m}}(\phi, V_{\text{clay}}, S_{\text{co2}}, P_p) \right\|_2,$$

- Considerations for the rock physics model
- Time-lapse FWI framework
- Numerical example

True reservoir model

Elastic model

0

0.5

1

Depth (km)

Vs (Baseline)

Synthetic data

Transform Inversion result

Convergence properties

- Outcomes
 - A rock physics model linking porosity, lithology, saturation, and pressure to seismic attributes.
 - An FWI framework for the prediction of dynamic reservoir properties from time-lapse seismic data.
- Challenges
 - Uncertainties in the rock physics relations, baseline estimates, and monitor data.
- Next steps
 - More comprehensive numerical analysis
 - Potential application: CREWES & CMC rapid-repeat surveys.

• CREWES Sponsors

• NSERC - CRDPJ 543578-19

CREWES Staff and Students