

Quantitative FWI characterization and monitoring of reservoir properties at the CMC Newell County Facility

Qi Hu, Matt Eaid, Scott Keating, and Kris Innanen

2022 Sponsors meeting

Dec 2, 2022

Seismic data

Eaid et al. (2021)

Well-log data

• Eaid and Keating (2021)

FWI of accelerometer, DAS, and hybrid DAS-accelerometer data sets.

• Key strategies:

Effective source method Inclusion of DAS data in inversion Log derived model-parameterization 50% DAS + 50% Accelerometer

• Effective source method

$$E(\mathbf{m}, \mathbf{f}^*) = \frac{1}{2} \|\mathbf{R}\mathbf{u} - \mathbf{d}\|_2^2$$
 subject to $\mathbf{A}(\mathbf{m})\mathbf{u} = \mathbf{f}^*$.

- Effective source
- Receivers

Model domain

Inclusion of DAS data in FWI

 $\mathbf{d} = \mathbf{R}\mathbf{u}$

2000

Log derived model-parameterization

Pros:

- **Reduce non-linearity**
- Avoid unphysical result

Cons:

- **Introduce errors to the inversion**
- Lose elastic information

- Towards stable multi-parameter inversion
 - Model Parameterization

$$\mathbf{m'} = \log\left(\frac{\mathbf{m} - m_{\min}}{m_{\max} - \mathbf{m}}\right)$$

Model constraint

$$E = E_d + \lambda \left\| \mathbf{m}_1 - f(\mathbf{m}_2) \right\|_2^2$$

Elastic FWI result

Modeled data

Prior distribution of rock physics variables

Bayesian rock physics inversion

100

300

Depth (m)

0.8

0.7

0.6

0.5

0.4

General problem

f: Wave equation

$$f: Wave equation g: rock-physics model
$$f(\mathbf{m}_e) + \mathbf{n} = f(g(\mathbf{m}_r)) + \mathbf{n}$$

$$f(g(\mathbf{m}_r)) + \mathbf{n}$$$$

• FWI incorporating rock physics model

$$\frac{\partial \mathbf{A}}{\partial r_i} = \frac{\partial \mathbf{A}}{\partial e_1} \frac{\partial e_1}{\partial r_i} + \frac{\partial \mathbf{A}}{\partial e_2} \frac{\partial e_2}{\partial r_i} + \frac{\partial \mathbf{A}}{\partial e_3} \frac{\partial e_3}{\partial r_i},$$

$$(e_1, e_2, e_3) = g(r_1, r_2, \dots, r_N)$$

(Hu et al, 2021)

Recovered model

Inverted Vquartz

Inverted Vclay

Model profiles

16

 We focus on using the technology of full-waveform inversion (FWI) to reconstruct elastic and reservoir property models from the 2018 CMC VSP survey

 The reconstructed baseline models, if verified, can be used to support further time-lapse analysis, e.g., reduce the uncertainty in predicting CO₂ distribution during injection and migration

- CREWES Sponsors
- NSERC CRDPJ 543578-19
- Carbon Management Canada
- CREWES Staff and Students