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Introduction

 Statistical and machine learning techniques can be broken into two broad classes:
 Linear regression and classification techniques.
 Nonlinear regression and classification techniques.

 In this talk, I will focus on the relationship between linear and nonlinear regression 
techniques.

 In geophysics, we are familiar with the primal least-squares approach, and I will 
first review that method.

 I will then introduce the dual representation, which can be derived from the primal 
method with a pre-whitening term.

 I will show that nonlinear regression techniques can then be derived using the 
kernel substitution approach, which is based on the dual representation.

 I will show several simple model examples and then finish with a case study from 
the Blackfoot dataset.



The linear model

 In geophysics and machine learning, the linear model is written:
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 In the above model, y is a vector of N observations, X is matrix consisting of 
D columns of attributes, or features, plus a column of ones, and w is a vector 
consisting of D+1 weights, where w0 is called the bias.
 Examples of this model include AVO analysis, predicting a reservoir 

parameter from multiple attributes, and seismic tomography.



The linear basis function model

 The linear basis function model is an extension of a linear model where x is 
replaced with M+1 nonlinear basis functions φj(x), or:

 As with the linear model, the linear basis function model can be written in matrix 
format as follows, but note that this is now an N x M+1 dimensional matrix: 
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Basis functions

 The two most common basis functions are the polynomial and the Gaussian (a 
third is the sigmoidal function, but I will only discuss the first two today).
 If we consider the case of D = 1, the polynomial function is written:

 The Gaussian function is written:
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 If we substitute the polynomial function into the previous equation, we get:
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Solving for the weights – the primal and dual solutions

 You will be familiar with the primal least-squares solution given by:
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 where ΦTΦ is the inner product of Φ, λ is the pre-whitening term and IM+1 is the 
M+1 x M+1 identity matrix.
 The pre-whitening form of the inverse also allows us to derive the dual form of the 

solution (see Appendix), given by:

 where ΦΦT is the outer product of Φ, an N x N square matrix, and λIN is a pre-
whitening term that now uses the N x N identity matrix.
 Note that we can introduce an M+1 x N size matrix Φ†, called the generalized 

inverse, which is identical for both formulations: 
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 The simplest example has D = 1, M = 1, and 
N = 3 points:
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 This gives a set of 3 equations with 2 
unknowns:

1 0 1 1

2 0 1 2

3 0 1 3

y w w x
y w w x
y w w x

= +
= +
= +

Linear polynomial regression

 Since N > M + 1, this is called the over-determined case, since there are more 
observations than unknowns.



 These equations can be written in matrix 
form as:

8Primal and dual least-squares solution
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 Using λ = 0 for the primal solution and 10-6

for the dual solution we get the generalized 
inverse solution below and the regression 
line shown on the right:
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 The linear regression line can be 
written for each point x as:
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 For the open circle, this gives:



 It is obvious that inverting the 2 x 2  matrix in the primal form is more 
efficient than inverting the 3 x 3 matrix in the dual form.

 But if we write the outer product matrix in its expanded form, we find that:
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 Notice that this means that the matrix multiplication can be written in 
an alternate way, where each term is computed analytically:

The kernel matrix

1T
ij i jK x x= ΦΦ = +

 This is called the kernel matrix and is the fundamental idea of this talk.
 Before looking at the general case, let’s go to quadratic polynomial regression.



 If we let p = 2 in the polynomial equation, we get 3 equations with 3 unknowns:
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 These three quadratic equations can be put into the following matrix form, 
where the third column of X is equal to the square of the x values:

 Since Φ is now square it can be inverted directly, and both the primal and dual 
solutions will give the same answer without any pre-whitening.

2
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Quadratic regression
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 The quadratic fit to our points can 
therefore be computed as follows:

1
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 The resulting fit is shown on the 
right and is as follows:

 Notice the perfect fit, but how rapidly it becomes negative to the left and right of the 
points, unlike the linear fit.

2ˆ( ) 4 6.5 1.5
ˆ(2.5) 4 6.5(2.5) 1.5(6.25) 2.875
y x x x
y

= − + − ⇒
= − + − =

The quadratic regression fit



 The outer product matrix for the quadratic case is:
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 This suggests that the kernel matrix be written as follows, which is very close 
to the correct answer except for one extra xixj term:

The dual product in quadratic regression

( ) ( )2 2 2 21 ,  since 1 1 2T
ij i j i j i j i jK x x x x x x x x= + ≈ ΦΦ + = + +

 Before leaving this simple problem, let’s look at the cubic polynomial, since it 
will teach us the important concept of over-fitting.
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 These three linear equations can be put into the following matrix form, where 
the fourth column of Φ is equal to the cube of the x values:

2 3
1 0 1 1 2 1 3 1

2 3
2 0 1 2 2 2 3 2

2 3
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y w w x w x w x

y w w x w x w x

y w w x w x w x
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 If we let M = 3 in the polynomial equation, we get 3 equations with 4 unknowns, 
which is the underdetermined case since we have more unknowns than 
observations:

Cubic regression
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 For the cubic solution, the primal form now 
needs pre-whitening, whereas the dual form 
gives the correct answer without pre-whitening:

 The resulting fit is shown on the right and is 
as follows:  However, since this problem 

is over-determined, the 
solution overfits the problem 
with an extra “swing”.
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Cubic regression solution



 Now let’s write the outer product matrix for the cubic regression problem:
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 This suggests that the kernel matrix be written approximately as follows, which 
has two extra xixj and xi

2xj
2 terms from the matrix multiplication:

The dual solution to cubic regression

( ) ( )3 3 2 2 3 31 ,  since 1 1 3 3T
ij i j i j i j i j i jK x x x x x x x x x x= + ≈ ΦΦ + = + + +

 I think you can see a pattern here as we move to higher polynomials!
 Next, let’s look at the general theory of kernels.
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 By using what is called kernel substitution, or the kernel “trick”, we can obtain 
the kernel matrix K as a function of the xi and xj terms, which for the Mth order 
polynomial can be written as follows:

 What I have been leading to with the simple three-point polynomial regression 
example is that we can re-write the dual formulation as follows:

Kernel functions

( ) 1 , where  is called the kernel matrix.T
NK I Kλ −Φ +w = y

( , ) (1 )M
ij i j i jK k x x x x= = +

( ) [ ]1
1, where  =  are called the dual variables.TT

N NK I a aλ −Φ = + w = a a y

 Another way to write the above equation is as follows:
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 The kernel substitution trick allows us to compute the kernel matrix without 
having to know the matrix Φ.

 But how do we deal with the term Φ in the computation of the weights?
 To understand this, note that we are only interested in the application of the 

weights, so we can compute the output as:

Applying the kernel function

ˆ( ) ( , )iy x k x x= a

 That is, the output at each sample x simply applies the kernel function between 
the output sample and each training sample.

 For example, with the polynomial kernel we get:

1 1ˆ( ) (1 ) (1 )M M
N Ny x a xx a xx= + + + +

 The results of applying this method to our three-point problem is shown in the 
next slide. 
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 Linear, quadratic, and cubic regression 
fits for the 3-point example, where the 
solid lines use the matrix approach and 
the dashed lines use the kernel approach,

 Note that the linear fit is perfect, the 
quadratic fit is close to perfect, but the 
cubic fit deviates as we move left.

 Obviously, going to higher order 
polynomials does not make sense for the 
three-point problem.

Polynomial kernels

 So let’s now looks at a more complex ten-point noisy sine wave example, 
which will show the full advantage of using the kernel method. 



19Noisy sine wave polynomial fits

 Here are the linear, quadratic and 
cubic polynomial kernel 
regression fits for a noisy sine 
wave example.

 The fits are close to those done 
using matrix polynomial 
regression.

 However, as seen on the next 
slide, using the kernel method 
makes it much easier to compute 
higher order polynomial fits.



20Noisy sine wave 10th order polynomial kernel fit

 Here is the polynomial kernel 
regression fit for the noisy sine 
wave example using M = 10.

 Since M = N, the number of points, 
the fit is now perfect for each point.

 However, note the wild downward 
and upward swings at each end of 
the fit, which means that we have 
only done an exact fit within the 
range of points shown here.

 This is therefore an example of 
overfitting.



21The Gaussian kernel

 For our 3-point problem, this can be written out in full as:

 Next, let’s move to the Gaussian kernel, which can be written as:
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22The Gaussian kernel

 The results of applying the Gaussian kernel to our three-point and noisy 
sine wave examples are shown on the next slide.

 The results of the Gaussian kernel inversion are applied to predict the 
unknown from the known points as follows:

( )

1 1 2 2

2
1

2

ˆ           ( ) ,  where 

( )exp , 1, , ,  and .
2

N N

i
i N

y x a a a
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φ φ φ
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= + + +
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 



 a y

 For the 3-point problem, this can be written as follows for each computed value:

22 2
31 2

1 2 32 2 2

( )( ) ( )ˆ( ) exp exp exp
2 2 2

x xx x x xy x a a a
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23Gaussian kernel regression for 3 and 10-point examples

 Here is the result of applying Gaussian Kernel regression to our three and 
ten-point examples using σ = 1.0.

 Notice that we get a perfect fit to the points and that the values trend quite 
well beyond the first and last points.



24The Radial Basis Function Neural Network (RBFN)

 The Gaussian kernel method is also a type of Radial Basis Function Neural 
Network (RBFN).

 Radial basis functions were introduced by Powell (1987) to perform exact function 
interpolation and were then recognized as a type of regression neural network.

 They were first introduced into seismic reservoir prediction by Ronen et al. (1994).
 They are called radial basis functions because each function depends only on the 

radial distance from a center µ, or: 

( )
1

( )
N

i i
i

f x w h x x
=

= −∑

( )( ) , where  a radial basis function.i ix h x hφ µ= − =

 When the number of radial basis functions equals the number of points, we get 
full interpolation:

 There are many types of radial basis functions, but the most common one is 
the Gaussian, which is identical to the Gaussian kernel method.



25The Generalized Regression Neural Network

 The Generalized Regression Neural Network (GRNN), is like the Gaussian 
kernel method except than no matrix inversion is involved. 

 Recall that Gaussian kernel regression was written:

( )
2
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1 1 2

( )ˆ( ) ( ),  exp , 1, , ,  .
2

i
N N i i N

x xy x a a x i N K Iφ φ φ λ
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 The GRNN is written as follows:
2

1 1
2

1

( ) ( )ˆ           ( ) ,  where exp .
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N N i i
iN

i
i

y y x x xy x φ φ φ
σφ

=

 + + −
= = − 

 ∑
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 In other words, the GRNN is a weighted sum of the input points where the 
weights themselves are normalized Gaussian kernels.



26GRNN result for the three and ten-point examples

 The application of GRNN for the three and ten-point examples using σ = 0.25.
 Note that the method extrapolates both the first and last values at the start and 

end of the plot.



27Real data example

 Finally, I will apply 
several of the 
techniques we have 
discussed to the 
prediction of reservoir 
parameters from 
seismic attributes 
(Hampson et al., 2001).

 I will use a channel 
sand example from the 
Western Canadian 
Sedimentary Basin, in 
which we predict 
density logs

A line from the input seismic 
volume, with the acoustic 
impedance log spliced in at 
its location. 

A line from the acoustic 
impedance volume, where 
the channel sand is located 
below a time of 1070 msec. 



28Extending the kernel method to multiple attributes

 The kernel solution is then given by:

( )
22

1

2 2exp , , exp , , 1, ,  (Gaussian)
2 2

i ji
i ij N ijK I K i j Nφ λ
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 The 1D case can be extended to multiple dimensions by letting xi be the D+1 
dimensional row vector for each of the N observed density values, where D is 
equal to the number of attributes:

[ ]1= 1 , 1, , .T
i i iDx x i N= x

1 1 2 2ˆ ( ) ,  where the two kernels are:N Na a aρ φ φ φ= + + +x
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= + = + = + = x x a x xρ

 The GRNN approach simply uses the Gaussian kernel:
2

2exp .
2

i
iφ σ

 −
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x x
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 Here is a comparison 
between multi-linear 
regression (M = 1) and 
the backpropagation 
network, which we did 
not discuss today.

 The multi-linear 
regression solution 
shows more continuity, 
but the backpropagation 
network shows higher 
frequencies.

Real data example

 I have not yet had a chance to implement the full polynomial kernel method in 
the real data case but expect it to produce a higher frequency result. 
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 Here is a comparison 
between the Gaussian 
kernel regression, or 
RBF, method and the 
GRNN approach.

 The GRNN method 
seems to give the 
highest frequency result 
of all four methods, but 
the RBF method is 
closer to the previous 
two results.

Real data example

 Note that all four analysis methods were able to clearly image the channel sand 
at a time of 1070 msec.



Conclusions

 In this talk, I discussed the relationship between linear and nonlinear regression 
techniques.

 I started by introducing the linear basis function model.
 I then compared primal and dual least-squares inversion of this model and 

showed that the primal approach inverts a much smaller matrix.
 However, by using kernel substitution, I showed that the dual representation leads 

to two nonlinear regression approaches: polynomial kernel regression and 
Gaussian kernel regression.

 I then applied these methods to both a simple three-point example and a more 
complex ten-point noisy sine wave example.

 I then discussed the radial basis function method, which is identical to the 
Gaussian kernel method, and the related generalized regression method.

 Finally, I applied these approaches to a density prediction problem using a real 
dataset from Alberta.



Acknowledgements

I wish to thank my colleagues at the CREWES Project and 
GeoSoftware for their support and ideas, as well as the sponsors 
of the CREWES Project and NSERC-CRD CRDPJ543578-19 .



Bishop, C.M, 2006, Pattern Recognition and Machine Learning: Springer-Verlag.
Hampson, D., Schuelke, J.S., and Quirein, J.A., 2001, Use of multi-attribute transforms to predict log properties 
from seismic data: Geophysics, 66, 220-231.
Hastie, T., Tibshirani, R., and Friedman, J., 2009, The Elements of Statistical Learning: Data Mining, Inference 
and Prediction, 2nd Edition: Springer Series in Statistics. 
Murphy. K.P., 2012, Machine Learning: A Probabilistic Perspective: MIT Press, Cambridge, Mass. 
Powell, M.J.D., 1987, Radial basis functions for multivariable interpolation: a review. In J.C. Mason and M.G. 
Cox (Eds.), Algorithms for Approximation, 143-167. Oxford: Clarendon Press.
Ronen, S., Schultz, P.S., Hattori, M., and Corbett, C., 1994, Seismic-guided estimation of log properties, Part 2: 
Using artificial neural networks for nonlinear attribute calibration: The Leading Edge, 13, Issue 6, 674-678.
Rummelhart, D.E., Hinton, G.E., and Williams, R.J., 1986, Learning representations of back-propagation errors: 
Nature, 323, 533-536.
Russell, B.H., 2019, Machine learning and geophysical inversion — A numerical study: The Leading Edge, 38,
Issue 7, 512-519.
Schölkopf, B. and Smola, A., 2002, Learning with Kernels: MIT Press, Cambridge, Mass. 
Shawe-Taylor, J. and Cristianini, N., 2004, Kernel Methods for Pattern Analysis: Cambridge University Press.
Specht, D.F., 1991, A general regression neural network: IEEE Transactions on Neural Networks, 2(6), 568-576.

References



 Polynomial regression using the covariance, or inner product, matrix XTX with 
ridge regression is called the primal solution and is written:

34Appendix: The dual regression solution

( )1
T T

pX X I Xλ ++ =w y

 This can then be re-arranged as: T TX X Xλ+ =w w y

 Further manipulation 
gives: 

( ) 1

1
T T

MX X I Xλ
−

+= +w y

 To derive the dual solution, we start by bringing the inverted term back to the left 
side:

( )1 T TX X Xλ−= −w y w

( )1TX Xλ−= −w y w

 Factoring out the transpose of X then gives
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 This can be written as: ( )1,  where TX Xλ−= = −w a a y w

 Now comes the “trick”, where we re-substitute the XTa form into w:
TX XXλ = − = −a y w y a

 This can then be re-arranged as: TXXλ = −a y a

 Finally, re-substitute into the weight equation to get the final form of the dual 
regression solution:

( ) 1T
NXX Iλ

−
= +a y

 We now re-substitute this into the definition of w to get:

( ) 1

3
T T TX X XX Iλ

−
+w = a = y

( )TXX λ+ =a y We then group the a terms:
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 That was a complicated derivation, but all you need to remember is the 
final equation for dual regression:

( ) 1T T
NX XX Iλ

−
+w = y

 Compare this with the equation for primal regression:

( ) 1

1
T T

pX X I Xλ
−

+= +w y

 Notice that this tells us that:

( ) ( )1 1

1
T T T T

N pX XX I X X I Xλ λ
− −

++ = +

 That is, the weights can be computed using either an inverse containing the 
N x N matrix XXT or the p+1 x p+1 matrix XTX. 
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