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Motivation

Elastic FWIAcoustic FWI
• Higher computational costs 
• Physically more correct since the observed

data do have elastic effects result from PS
and SP-wave conversions

• Efficient and robust
• Less correct due to neglecting elastic 

effects in the recorded field data  

Converted S-wave

P-wave + S-waveP-wave
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Motivation 

Elastic dataAcoustic data Difference 

EFWI + Elastic dataAFWI + Acoustic data AFWI + Elastic data

Surface survey

Correction methods:

• acoustic wave equation (Chapman
et al., 2014; Hobro et al., 2014)

• elastic data using matching filters
(Agudo et al., 2018)

• elastic data using deep learning (Li
et al., 2019; Voytan et al., 2022)

• gradient using GANs (Yao t al.,
2020)
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Motivation 
Elastic dataAcoustic data Difference 

EFWI + Elastic dataAFWI + Acoustic data AFWI + Elastic data

VSP survey
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Mitigate the elastic effects in AFWI for VSP data

Elastic data Acoustic data

Data domain

mapping
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Method

Workflow
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Method

Workflow

Step 1: assume we have access to the initial models necessary for acoustic FWI.
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Workflow

Step 2: perform AFWI with initial model to build an acoustic model, which better simulates the field
data.
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Method

Elastic data
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Workflow

Step 3: estimate Vp/Vs ratios to build a series of elastic models.
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Method

Elastic data
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Workflow

Step 4: generate synthetic acoustic and elastic shot gathers using the acoustic and elastic models
as the training data.
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Method

Elastic data
Acoustic FWI  
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Workflow

Step 5: train the network to learn the mapping from an elastic shot gather to its acoustic
equivalent.
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Method

Elastic data
Acoustic FWI  
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Workflow

Step 6: apply the network to observed data and perform AFWI.
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Result 

True VsTrue Vp

Initial Vp Initial Vs

Model and geometry

36 sources
128 receivers
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Data preparation and training

Architecture of the convolutional neural network

• Generate 1800 acoustic and
elastic shot gather pairs.

• Training data: 2880
• Validation data: 360
• Test data: 360

Data preparation

Training 
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Train
Validation

Loss

Optimizer ADAM
Software PyTorch
Hardware NVIDIA A100
Training time ~8 hours
Learning rate 0.0001
Loss function MSE
Batch size 50
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Predicted test data

Near offset Acoustic Elastic Predicted acoustic

Acoustic-Elastic Predicted Acoustic-Elastic Error 
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Predicted test data

Far offset Acoustic Elastic Predicted acoustic

Acoustic-Elastic Predicted Acoustic-Elastic Error 
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Spectra comparison
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Predicted observed data

Near offset

Far offset

Elastic Acoustic Predicted acoustic

Elastic Acoustic Predicted acoustic
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Baseline inversion result

AFWI + Elastic data

AFWI results

AFWI + predicted acoustic data
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Time-lapse inversion results

Time-lapse VpMonitor Vp

Predicted monitor data Time-lapse difference
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Time-lapse inversion results

Parallel strategy Target-oriented common model strategy
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Conclusions

• We develop a deep convolutional network to correct VSP seismic data to mitigate elastic

artifacts in acoustic FWI.

• Predicted data show that elastic wave phenomena can be effectively mitigated by the deep

learning approach.

• The image quality of inverted model by acoustic FWI can be improved after the elastic data

are transformed into their acoustic counterparts.

• We have conducted time-lapse acoustic FWI using acoustic baseline and monitor data

predicted by this deep learning approach, the inversion results show this approach can be

applied into monitoring velocity changes.

• This approach can decrease the computational cost and improve the monitoring efficiency.
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Future work

Baseline model Monitor model

Si

Vi
Se Ve

Incorporate a local solver like the FD-injection method (Robertsson and Chapman, 2000)

Time-lapse result

Si

Vi
Se Ve

• Based on the baseline model, calculate the wavefields at 

certain surface as effective sources.

• Chose receivers lies in the area and use the baseline and 

monitor data difference as observed data. 

• Si and Vi are the injection surface

and subvolume.

• Ve is an FD submesh for the second

simulation and Se acts like an AB.
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