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‘?7‘ Motivation

A
Acoustic FWI Elastic FWI
« Efficient and robust « Higher computational costs
« Less correct due to neglecting elastic * Physically more correct since the observed
effects in the recorded field data data do have elastic effects result from PS

and SP-wave conversions
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Motivation

Surface survey

a) Acoustic data )y  Elastic data o) Difference Correction methods:

« acoustic wave equation (Chapman
et al., 2014; Hobro et al., 2014)

» elastic data using matching filters
(Agudo et al., 2018)
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AFWI + Acoustic data , ~ EFWI + Elastic data ,  AFWI + Elastic data etal., 2019; Voytan et al., 2022)
« gradient using GANs (Yao t al.,
2020)
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‘A{f‘ Motivation

VSP survey

a)

a)

Acoustic data
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Mitigate the elastic effects in AFWI for VSP data

Data domain

Elastic data Acoustic data

mapping
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Step 1: assume we have access to the initial models necessary for acoustic FWI.
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Vs models Elastic data -

Step 2: perform AFWI with initial model to build an acoustic model, which better simulates the field
data.
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Workflow

Vp/Vs ratio assumption

Step 3: estimate Vp/Vs ratios to build a series of elastic models.
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Workflow : :
Final inverted |, Acoustic EW]
Vp model I
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Acoustic FWI acoustic data
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model " Acoustic data

Vp/Vs ratio assumption . Convolutional
| network

Vs models -~ Elastic data |-

Step 4: generate synthetic acoustic and elastic shot gathers using the acoustic and elastic models
as the training data.
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Step 5: train the network to learn the mapping from an elastic shot gather to its acoustic
equivalent.
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Workflow

Vp/Vs ratio assumption

Step 6: apply the network to observed data and perform AFWI.
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“r* Result

Model and geometry
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“y* Data preparation and training

Data preparation

Generate 1800 acoustic and
elastic shot gather pairs.

Training data:

2880

Validation data: 360

Test data: 360
Training
Optimizer ADAM
Software PyTorch
Hardware NVIDIAA100
Training time ~8 hours
Learning rate 0.0001
Loss function MSE
Batch size 50
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Architecture of the convolutional neural network
1

Train
Validation
0.8
0.6
2]
[}
o)
|
0.4
0.2
0 L —
0 500 1000 1500 2000

Epoch
Loss 15



‘?,7 Predicted test data

Near offset Acoustic Elastic Predicted acoustic
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‘A{;‘ Predicted test data

Far offset Acoustic Elastic Predicted acoustic
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' Spectra comparison

Spectra comparison
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‘A{f‘ Predicted observed data

Elastic Acoustic Predicted acoustic
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AFWI results
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‘ Time-lapse inversion results
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Time-lapse inversion results

Parallel strategy
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Conclusions

« We develop a deep convolutional network to correct VSP seismic data to mitigate elastic

artifacts in acoustic FWI.

« Predicted data show that elastic wave phenomena can be effectively mitigated by the deep

learning approach.

« The image quality of inverted model by acoustic FWI can be improved after the elastic data

are transformed into their acoustic counterparts.

« We have conducted time-lapse acoustic FWI using acoustic baseline and monitor data
predicted by this deep learning approach, the inversion results show this approach can be
applied into monitoring velocity changes.

» This approach can decrease the computational cost and improve the monitoring efficiency.
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“y* Future work

Incorporate a local solver like the FD-injection method (Robertsson and Chapman, 2000)

20 20

« Si and Vi are the injection surface

40 40

and subvolume.

60 60

< <
< <
> <
< <
> <
< <«
< <
< <

)

b
£

80 80

* Ve is an FD submesh for the second

100 100

N
:

simulation and Se acts like an AB.

\

120 120 - :

20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200

Baseline model Monitor model

20 150

40

60 /

certain surface as effective sources. 80

« Based on the baseline model, calculate the wavefields at o

 Chose receivers lies in the area and use the baseline and 100

. . 120
monitor data difference as observed data. 50 100 150 200

Time-lapse result

o

24



v Acknowledgements

« CREWES sponsors, staff and students
* Natural Sciences and Engineering Research Council of
Canada (NSERC)

25



