

Mitigating elastic effects of acoustic full waveform inversion for VSP data via deep learning

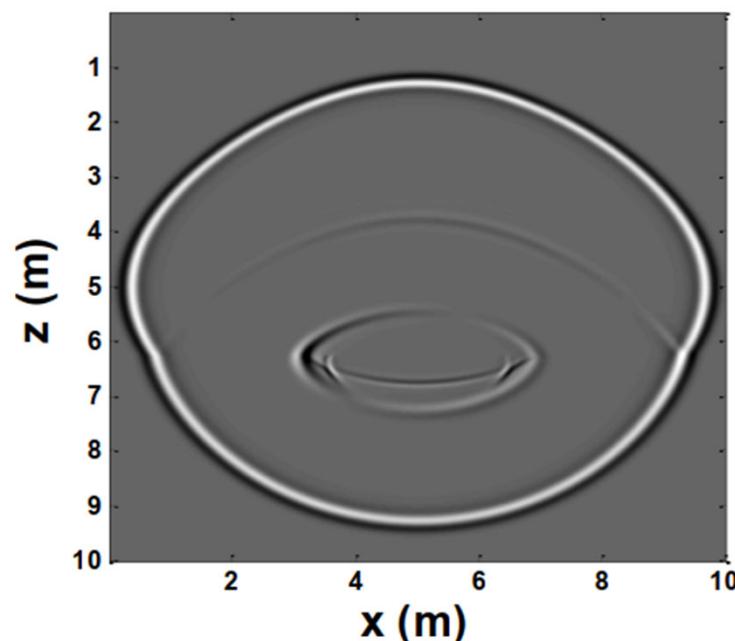
He Liu, Luping Qu, Daniel Trad, and Kristopher Innanen

Banff, AB, Dec 7th, 2023

- Motivation
- Method of mitigating elastic effects
- Neural network training results
- Acoustic FWI results
- Time-lapse results
- Conclusions

Acoustic FWI

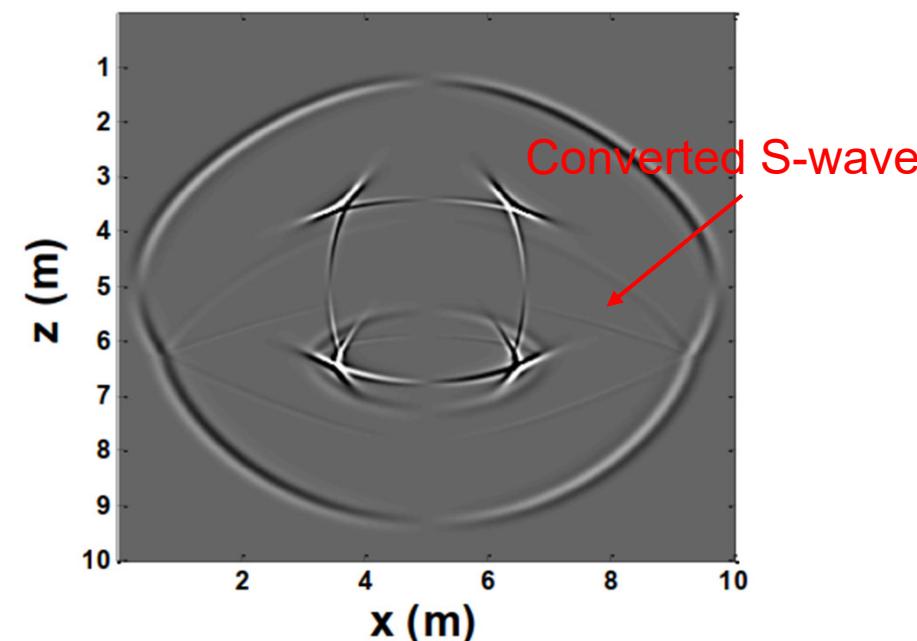
- Efficient and robust
- Less correct due to neglecting elastic effects in the recorded field data



P-wave

Elastic FWI

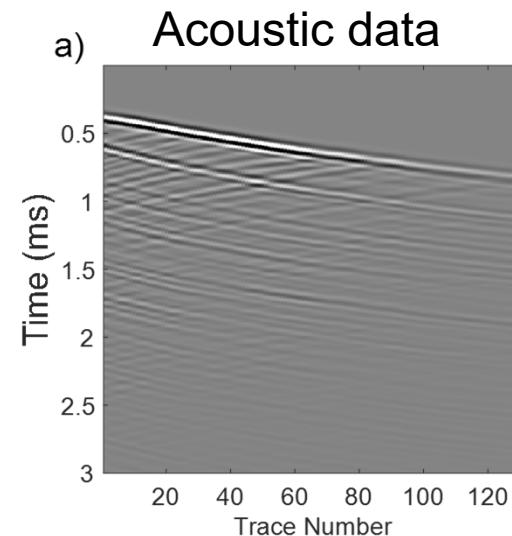
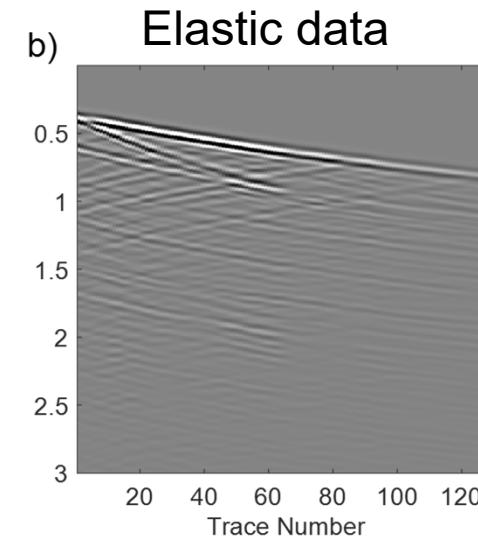
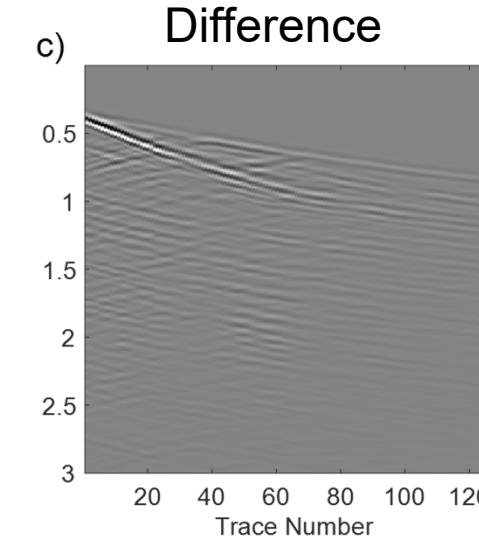
- Higher computational costs
- Physically more correct since the observed data do have elastic effects resulting from PS and SP-wave conversions



P-wave + S-wave

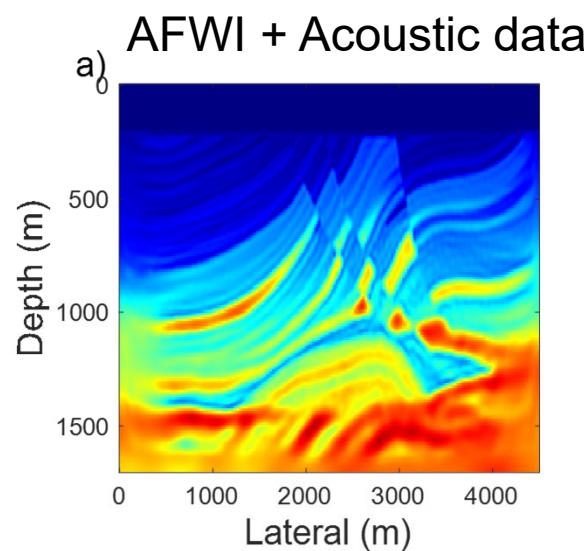
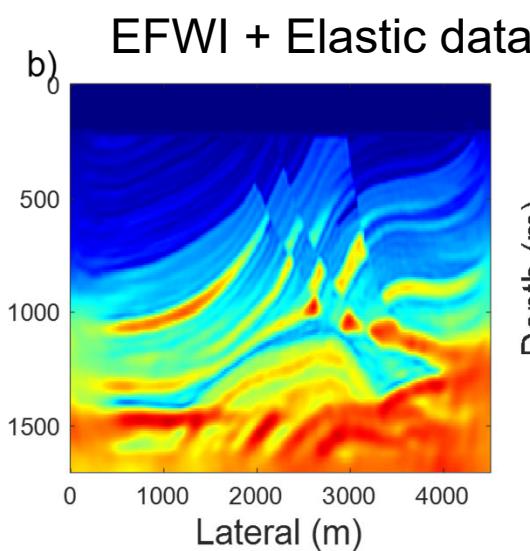
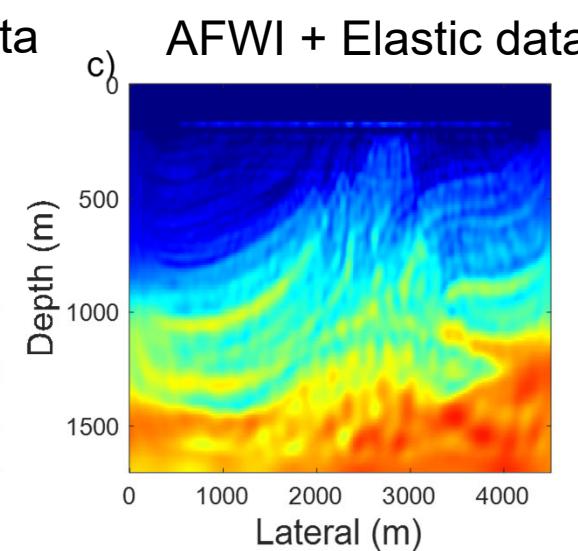
Motivation

Surface survey



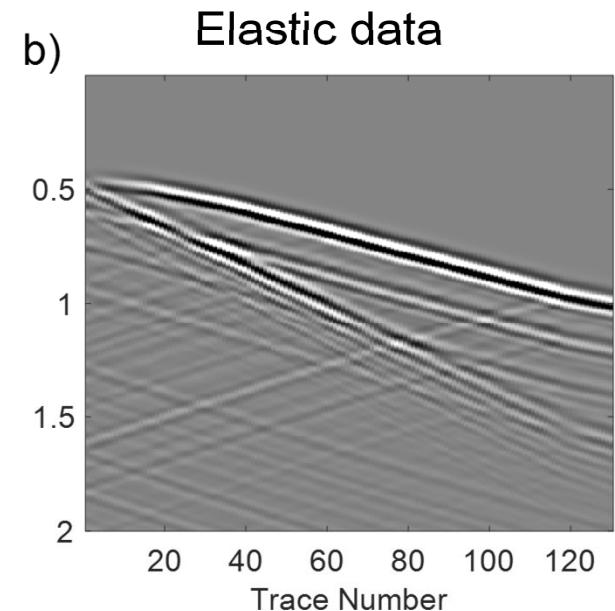
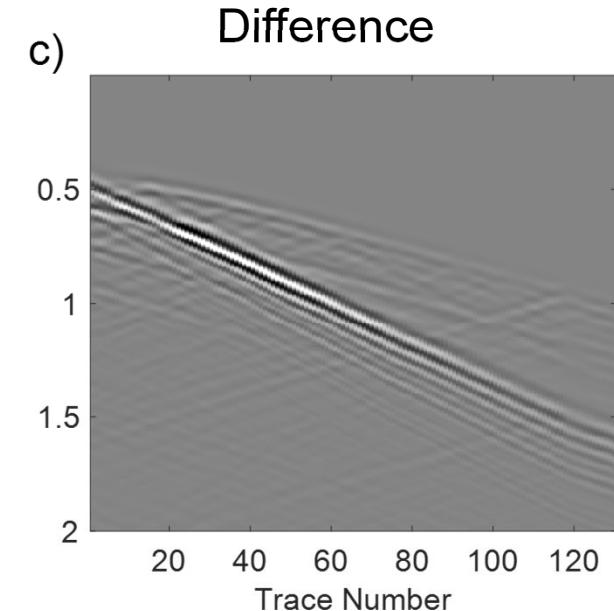
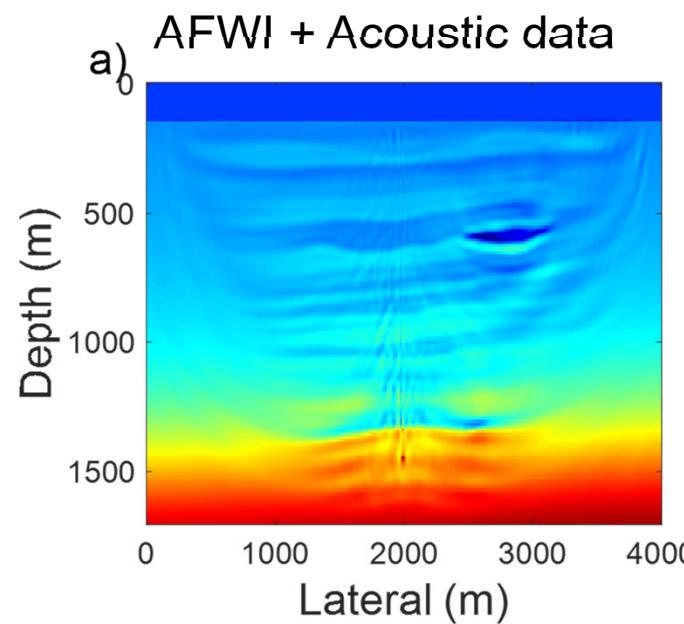
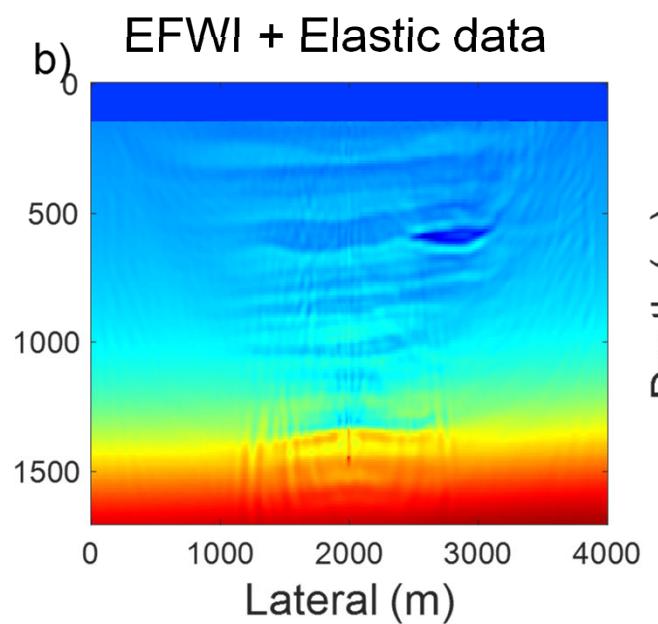
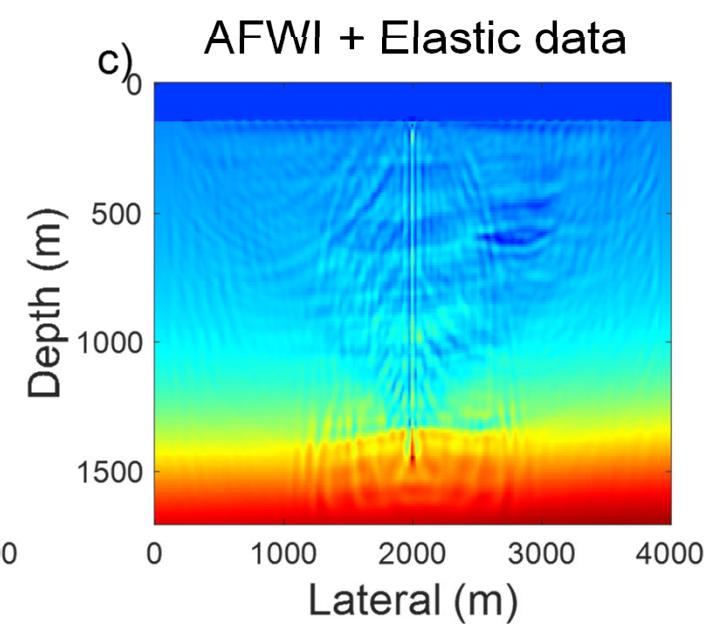
Correction methods:

- acoustic wave equation (Chapman et al., 2014; Hobro et al., 2014)
- elastic data using matching filters (Agudo et al., 2018)
- elastic data using deep learning (Li et al., 2019; Voytan et al., 2022)
- gradient using GANs (Yao et al., 2020)



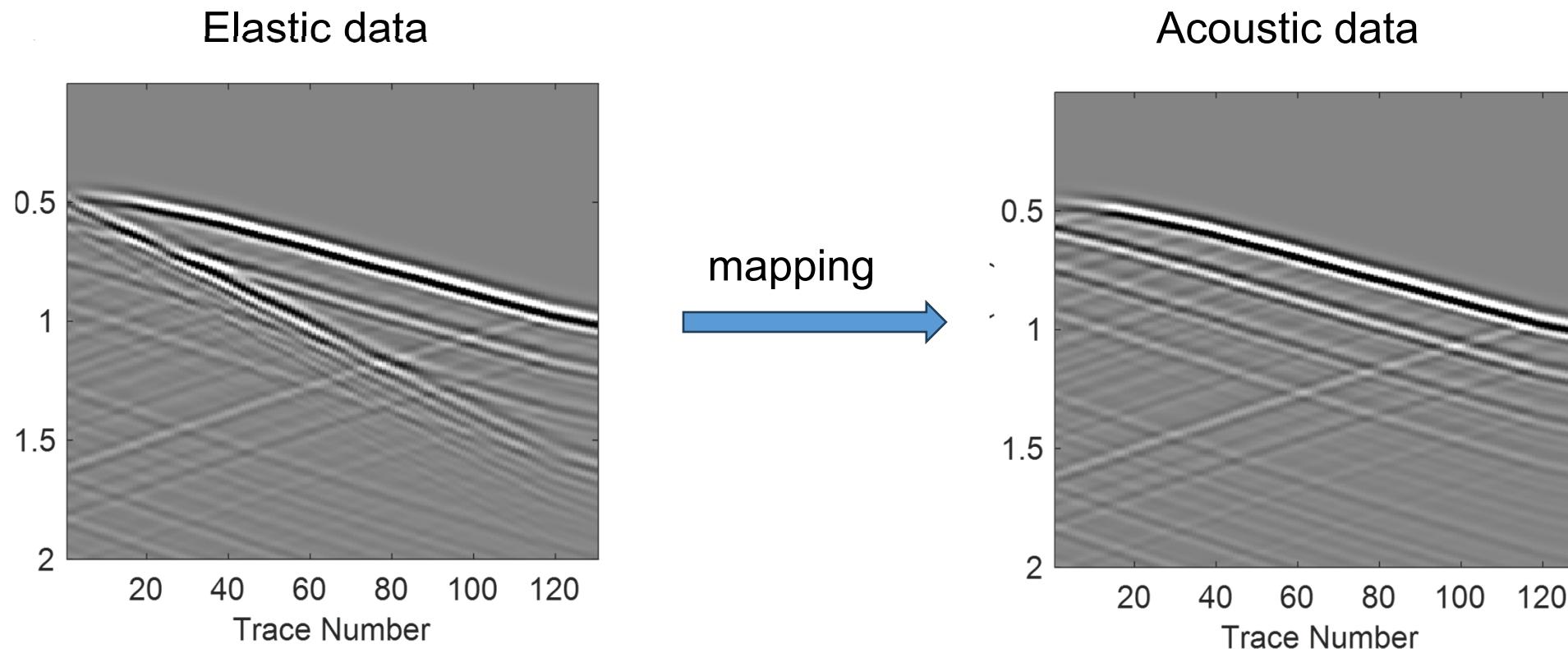
Motivation

VSP survey

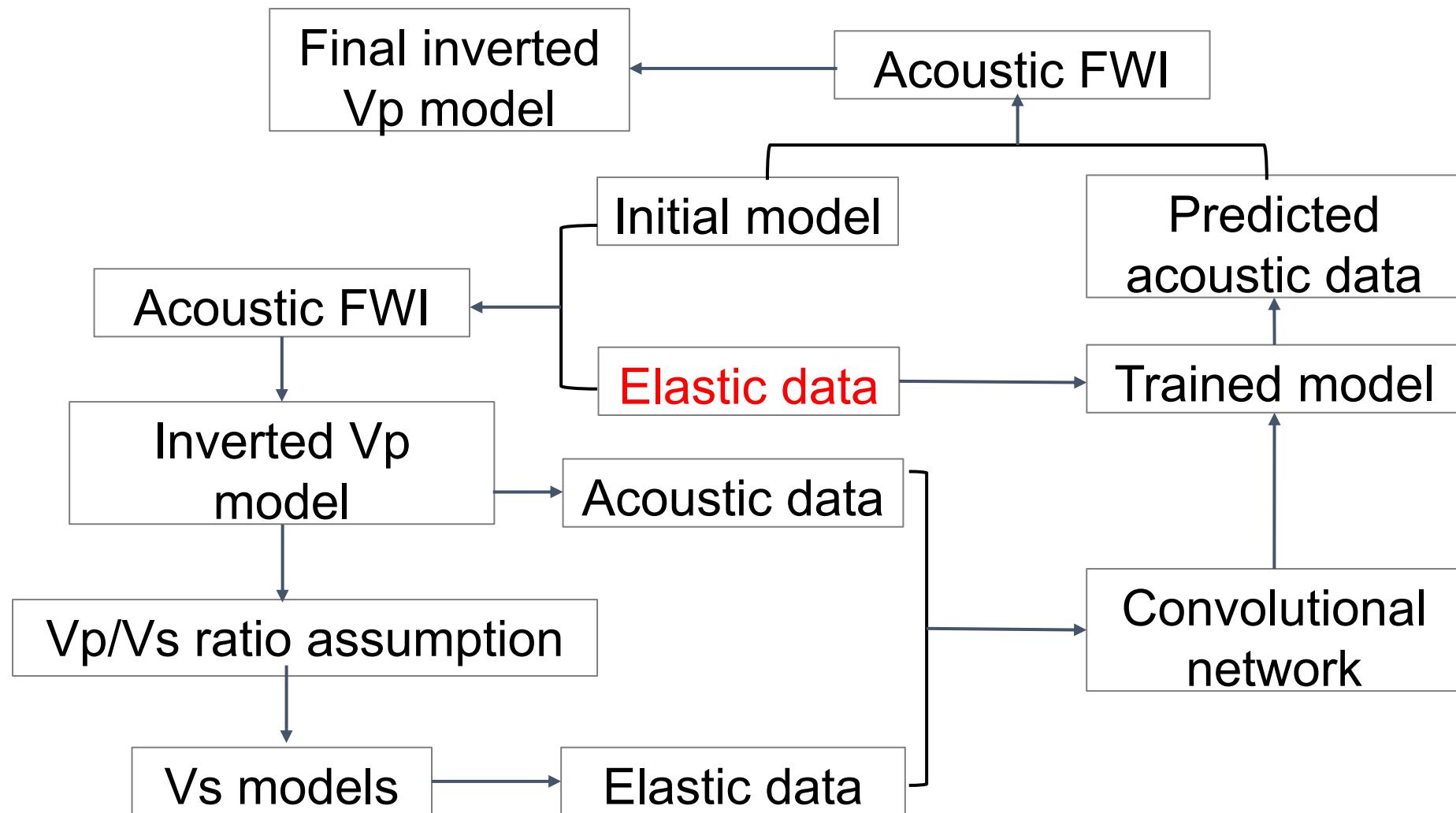


Mitigate the elastic effects in AFWI for VSP data

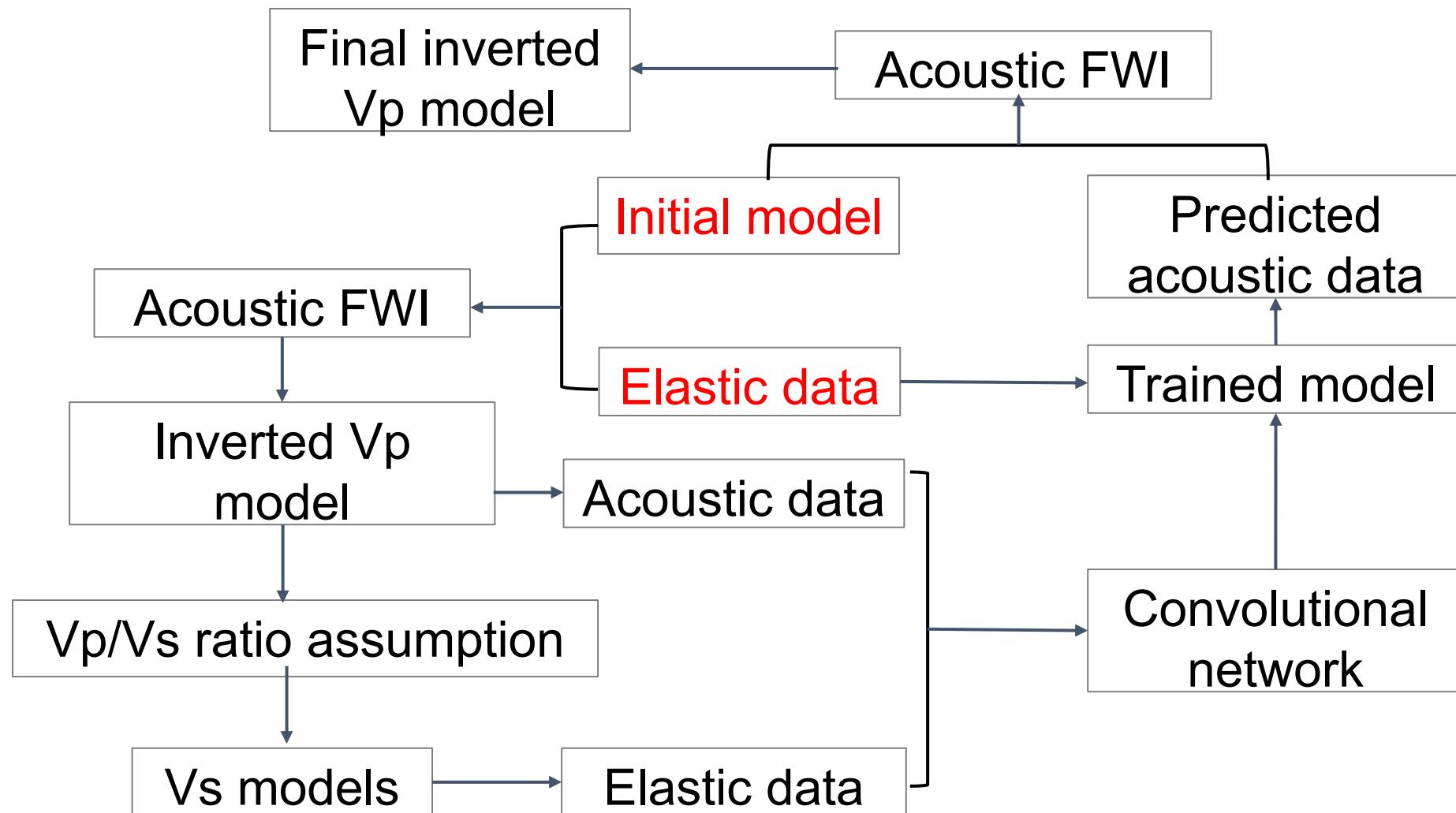
Data domain



Workflow

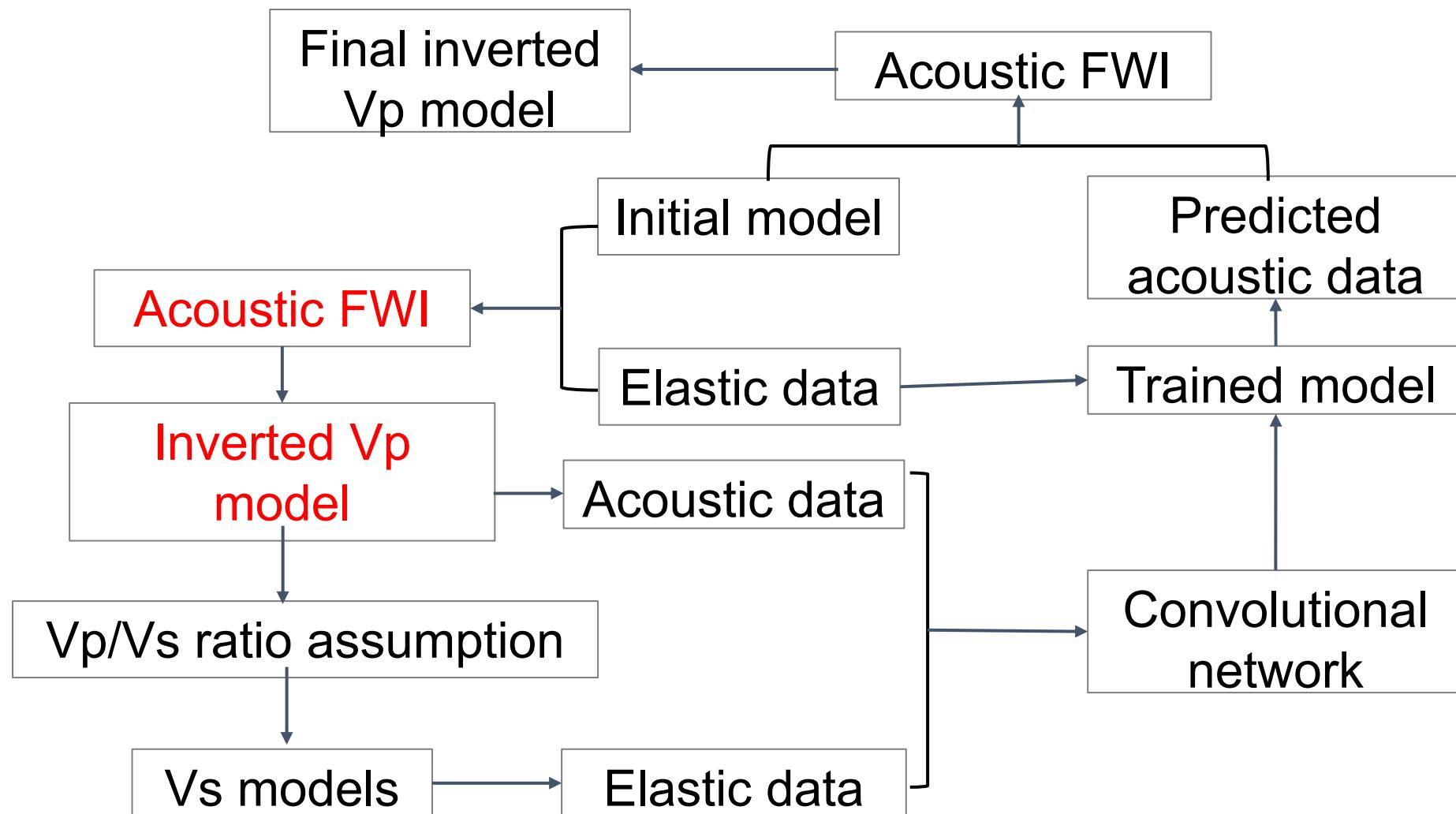


Workflow



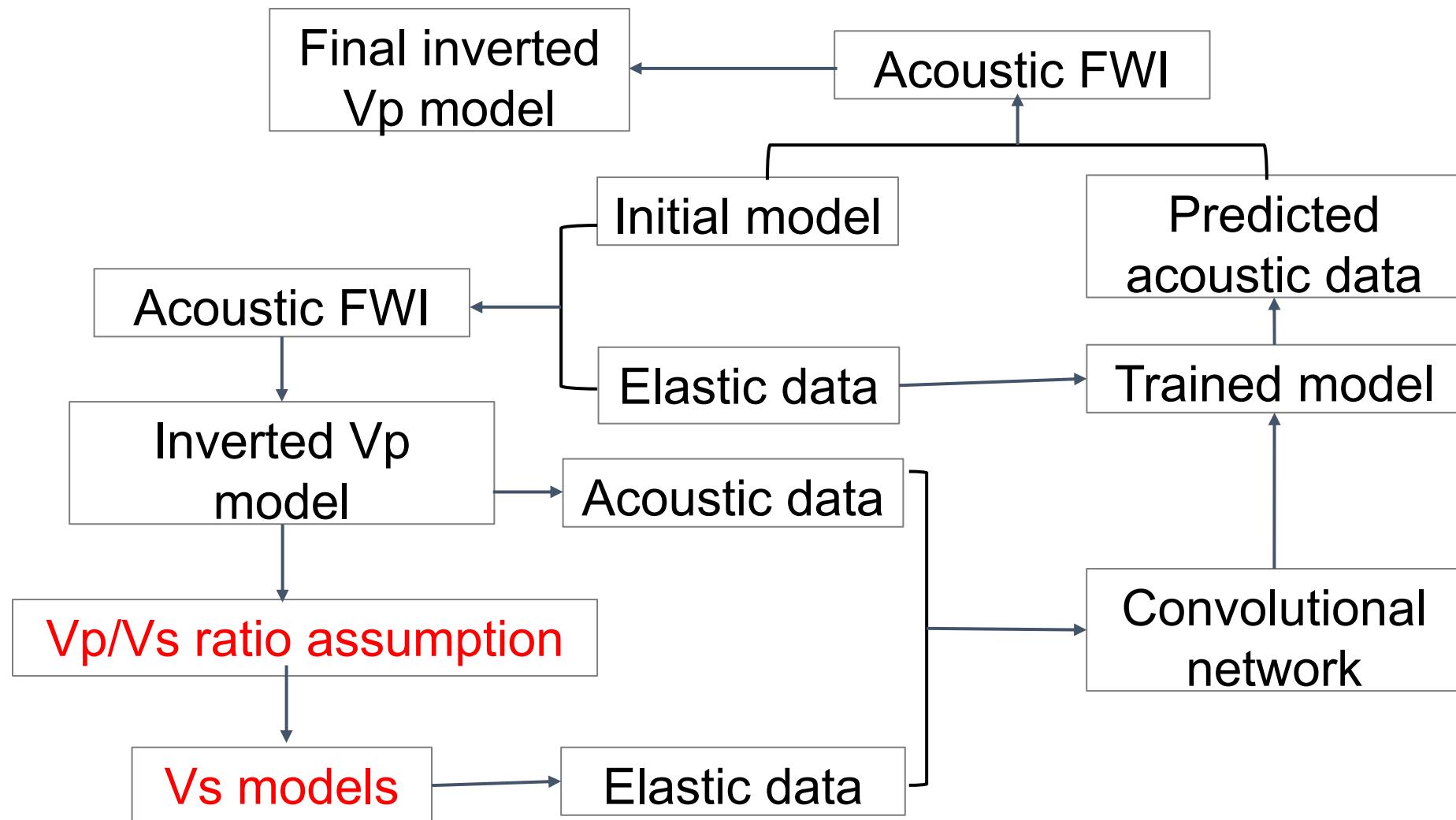
Step 1: assume we have access to the initial models necessary for acoustic FWI.

Workflow



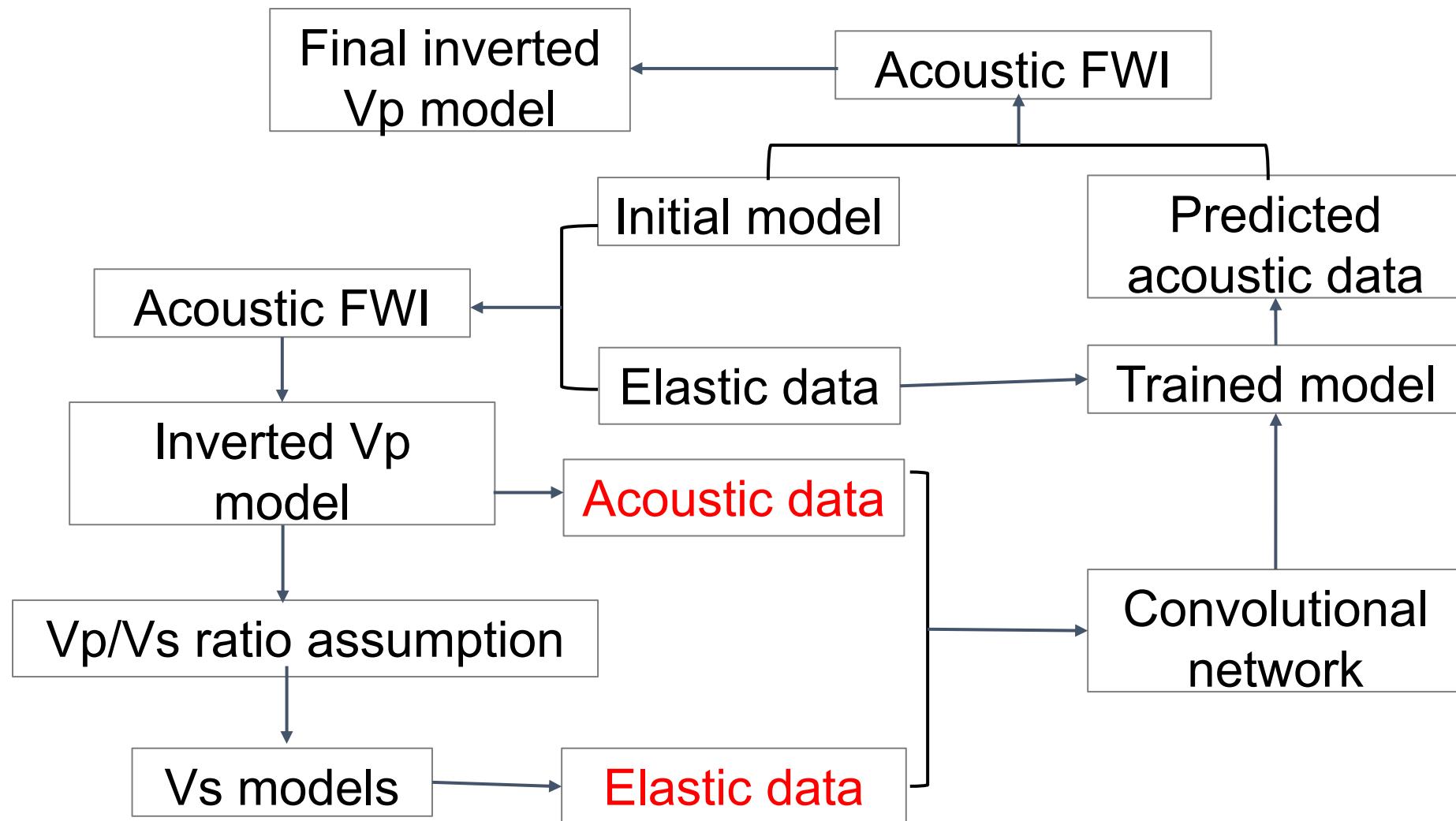
Step 2: perform AFWI with initial model to build an acoustic model, which better simulates the field data.

Workflow



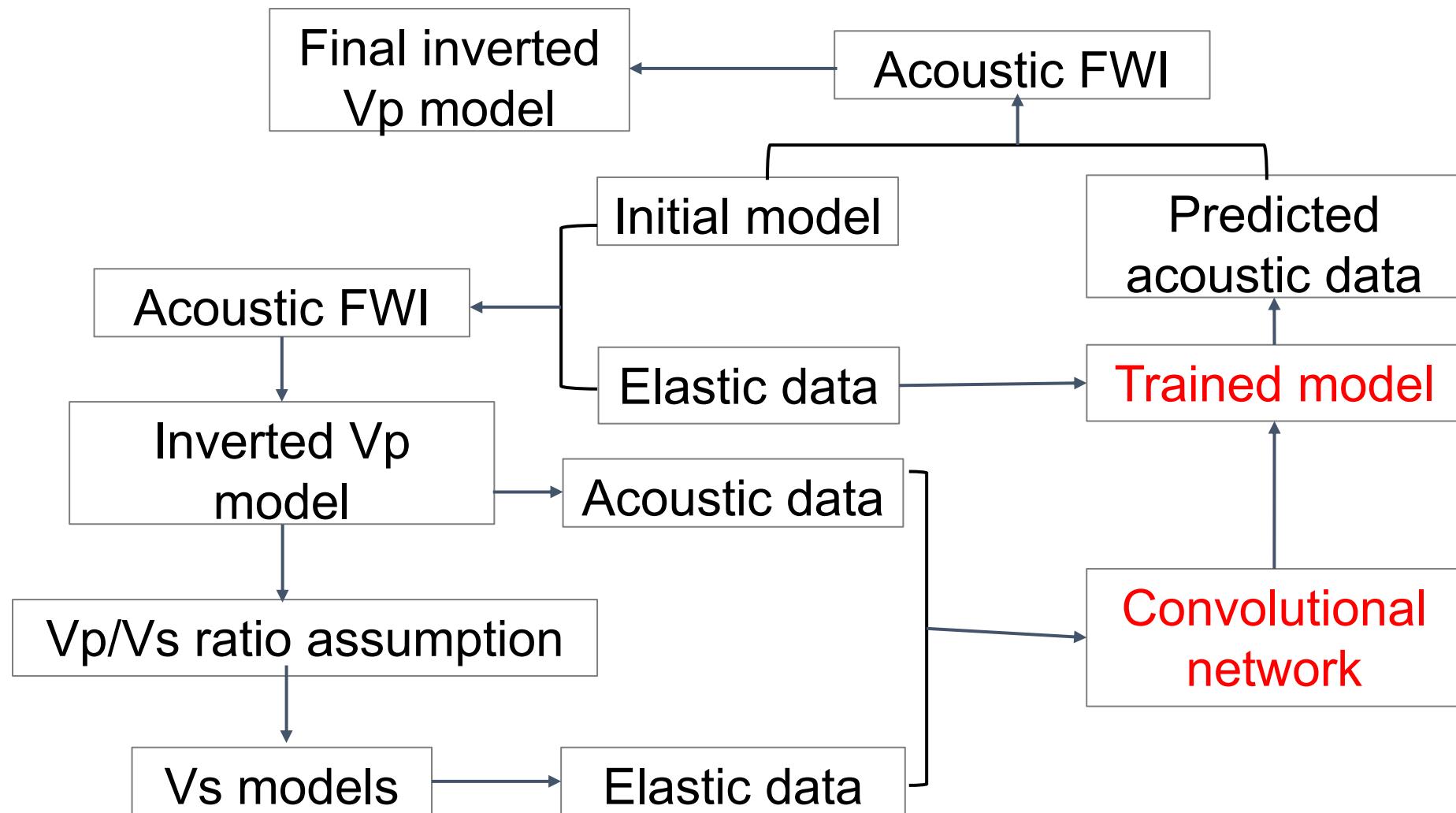
Step 3: estimate V_p/V_s ratios to build a series of elastic models.

Workflow



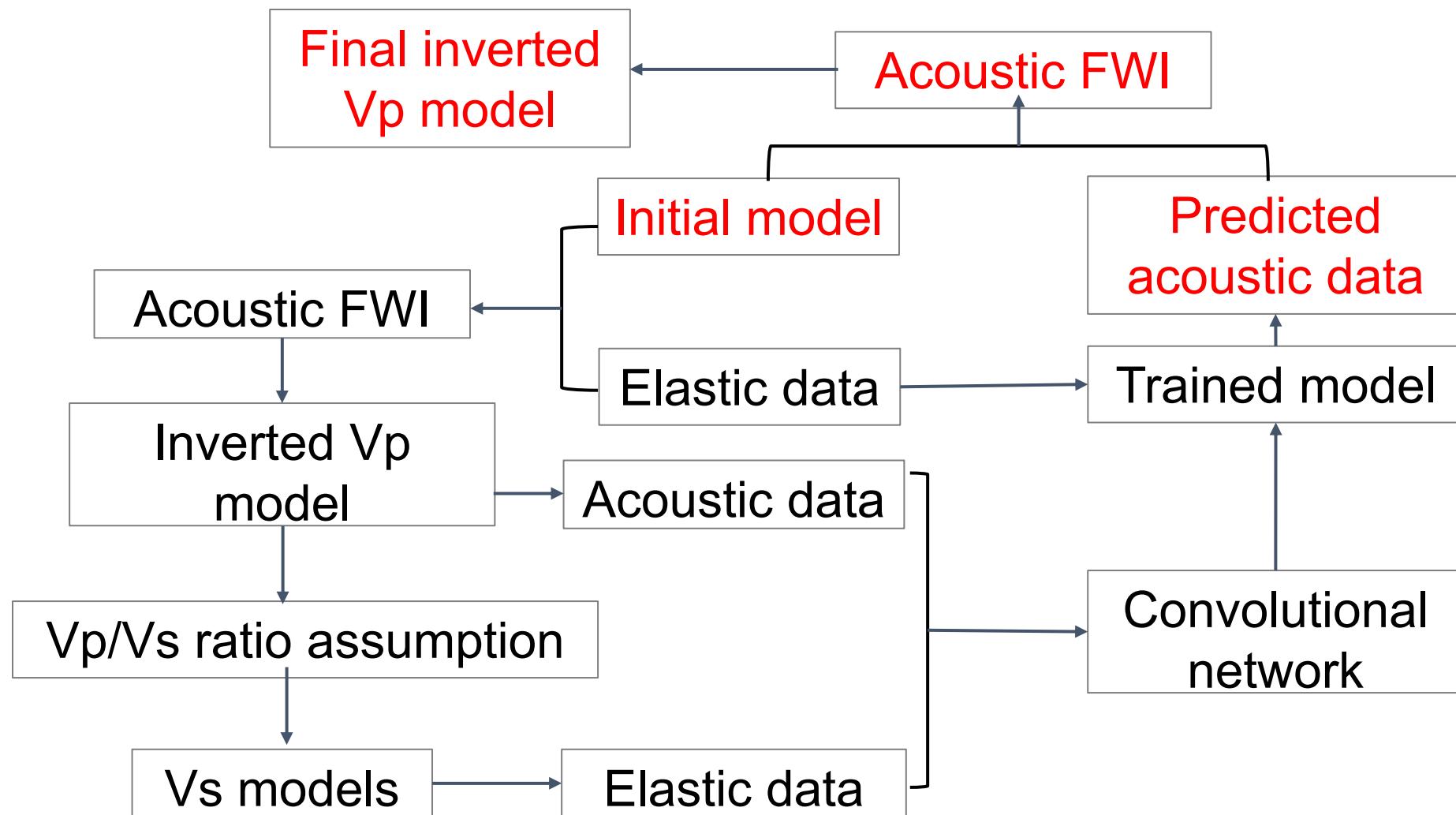
Step 4: generate synthetic acoustic and elastic shot gathers using the acoustic and elastic models as the training data.

Workflow



Step 5: train the network to learn the mapping from an elastic shot gather to its acoustic equivalent.

Workflow

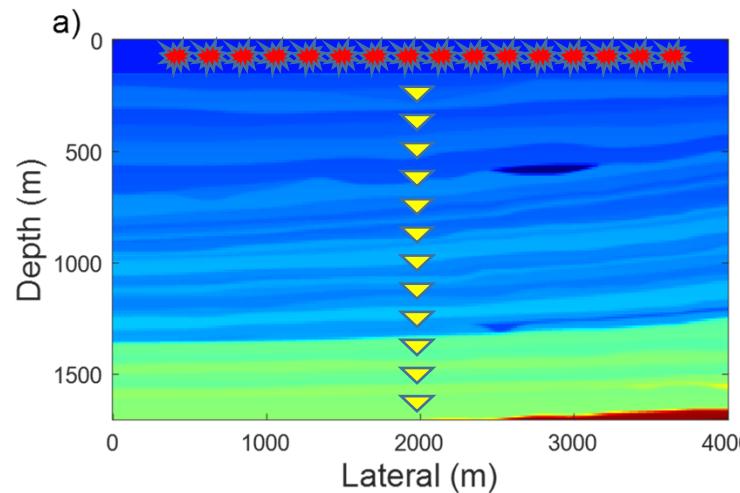


Step 6: apply the network to observed data and perform AFWI.

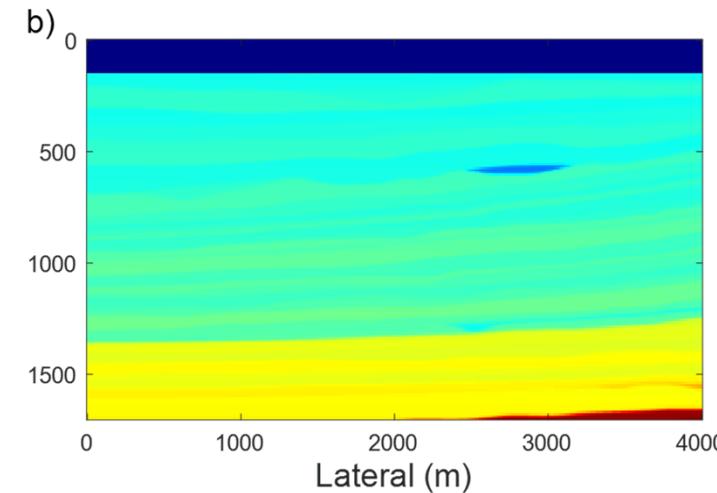
Result

Model and geometry

True V_p

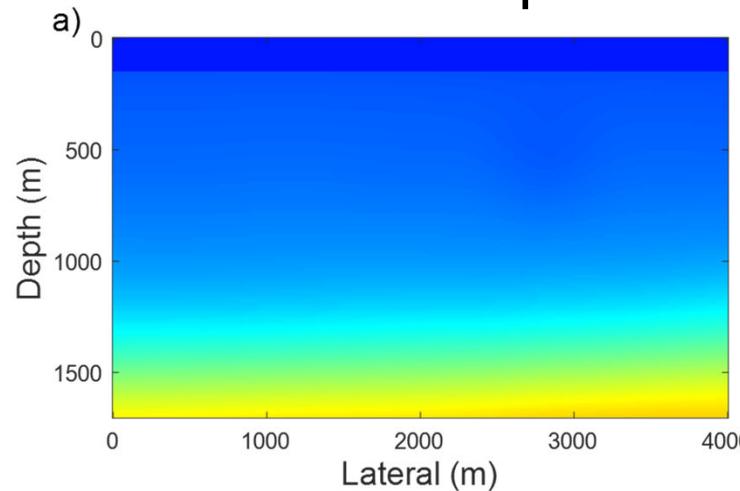


True V_s

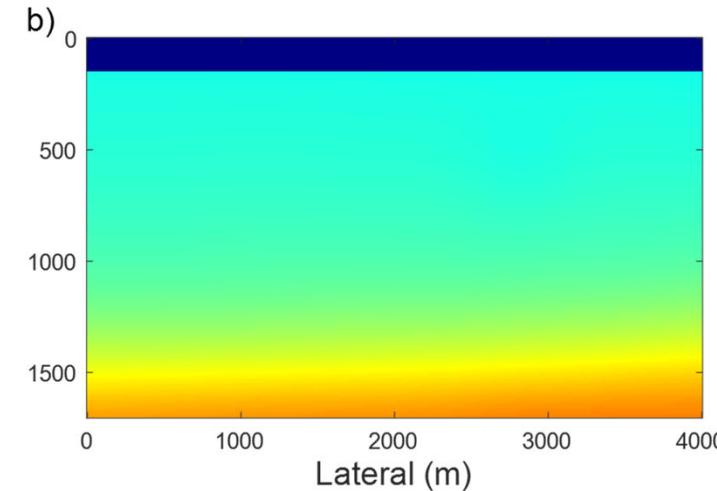


36 sources
128 receivers

Initial V_p



Initial V_s



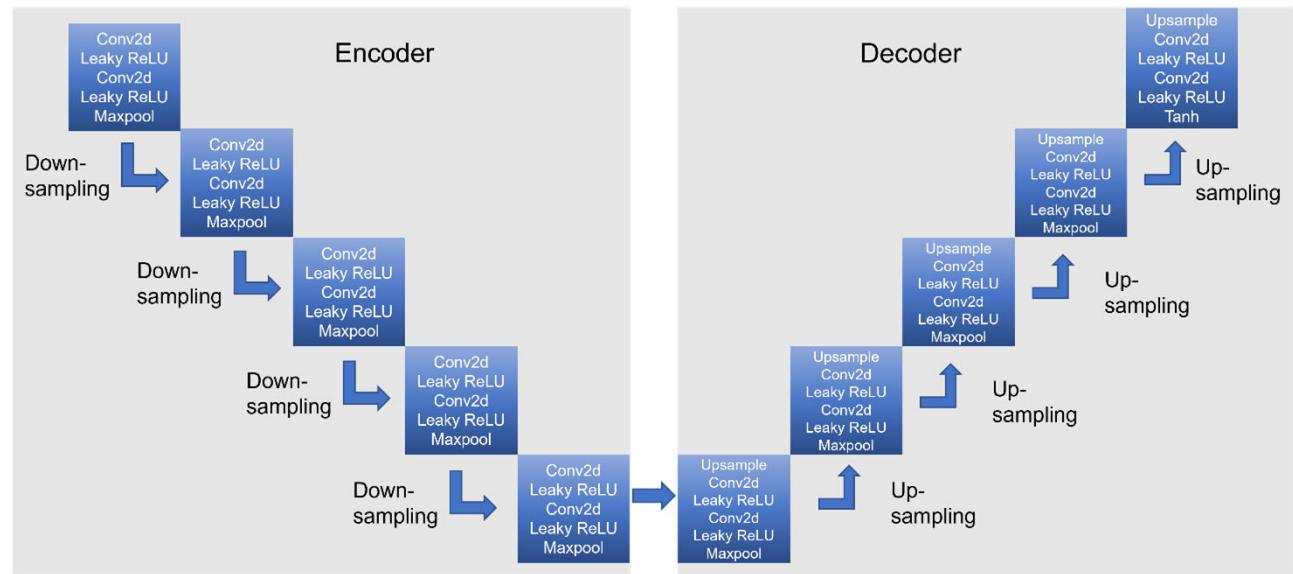
Data preparation and training

Data preparation

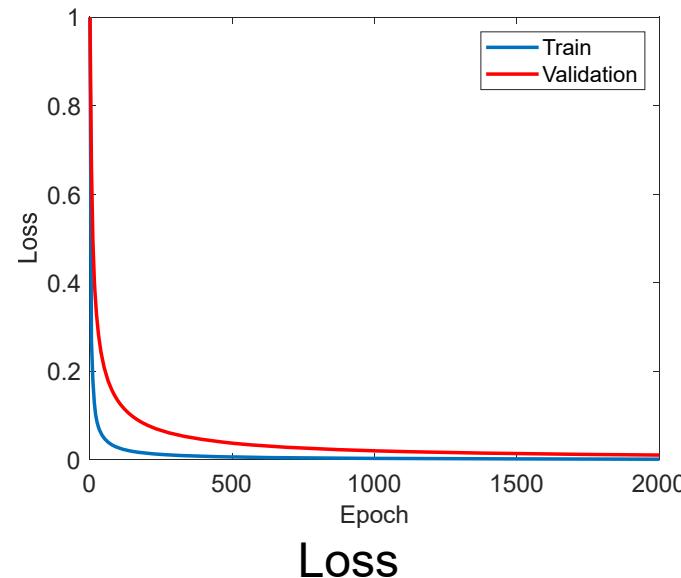
- Generate 1800 acoustic and elastic shot gather pairs.
- Training data: 2880
- Validation data: 360
- Test data: 360

Training

Optimizer	ADAM
Software	PyTorch
Hardware	NVIDIA A100
Training time	~8 hours
Learning rate	0.0001
Loss function	MSE
Batch size	50

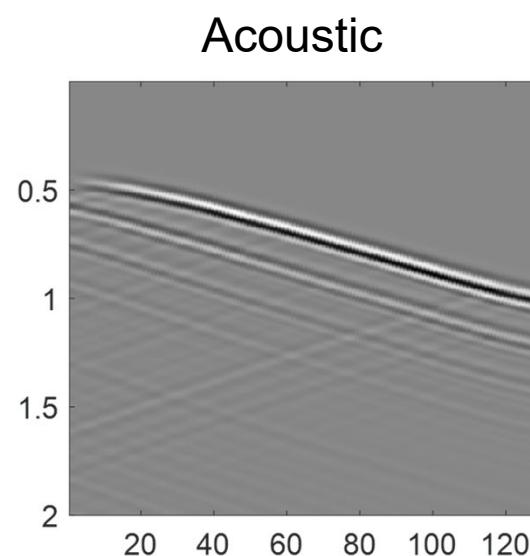


Architecture of the convolutional neural network

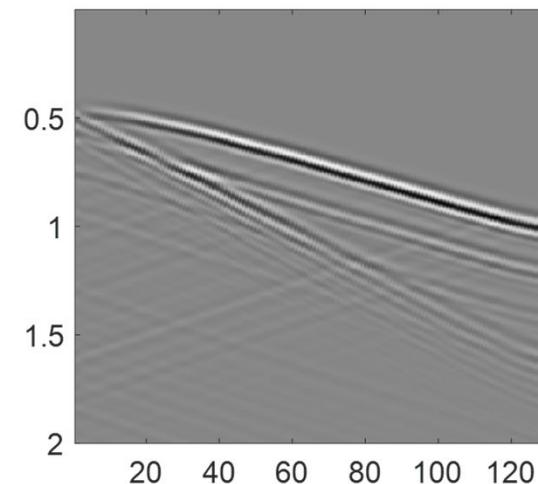


Predicted test data

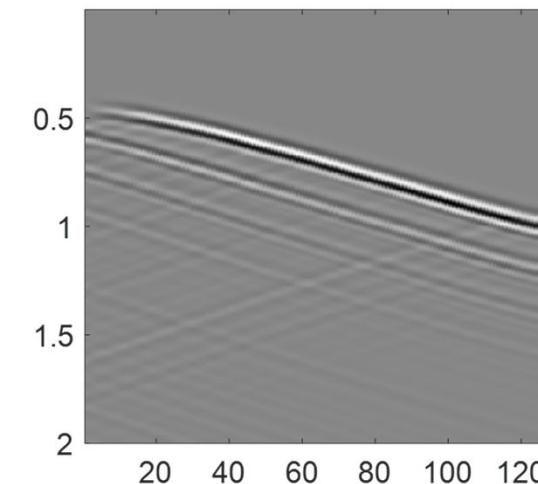
Near offset



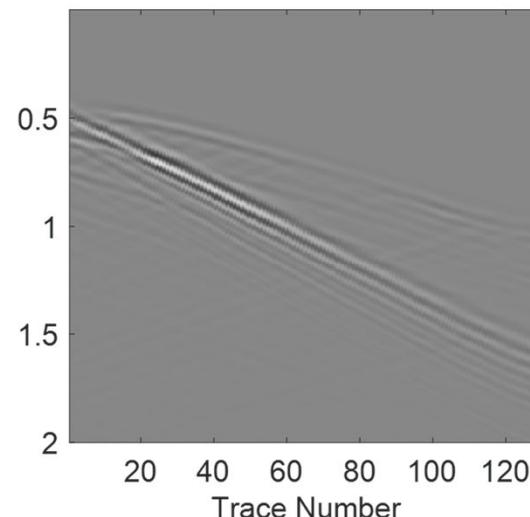
Elastic



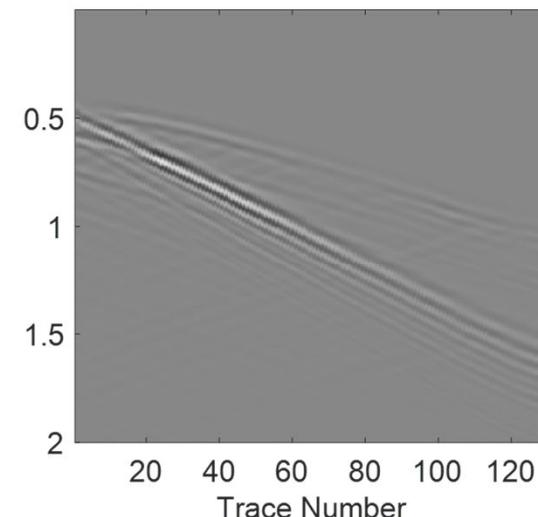
Predicted acoustic



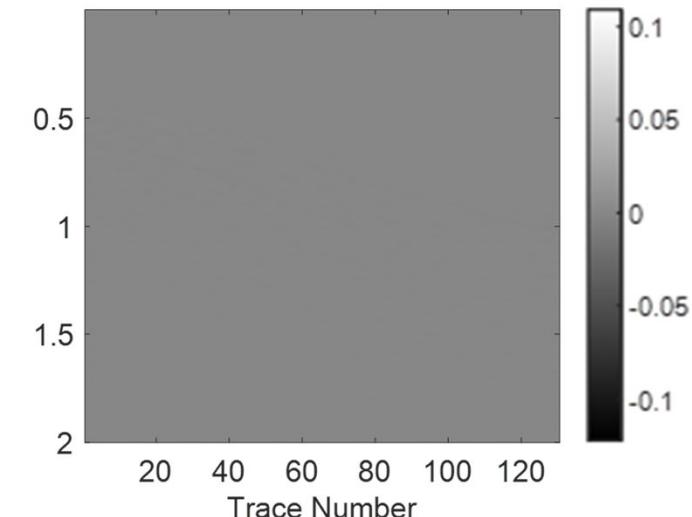
Acoustic-Elastic



Predicted Acoustic-Elastic

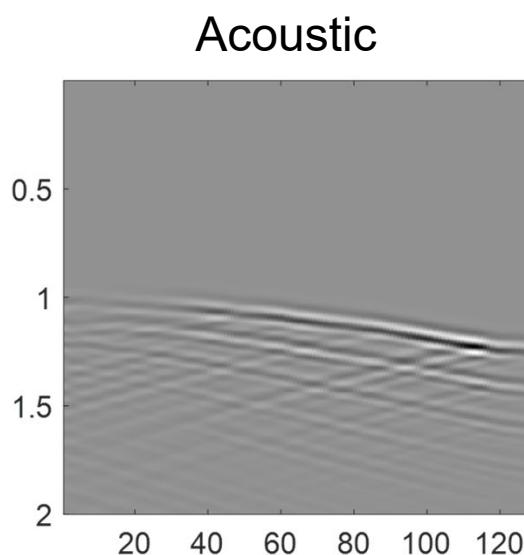
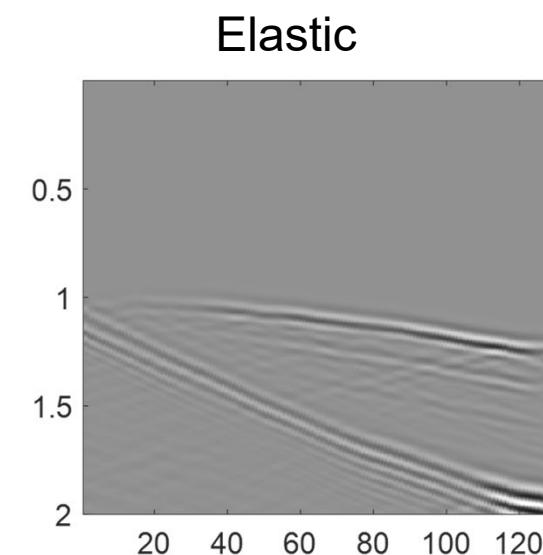
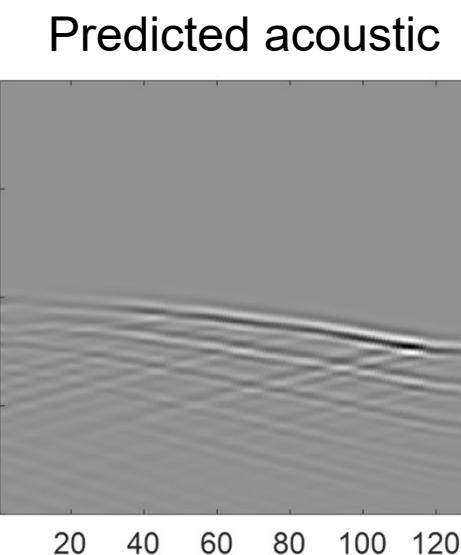
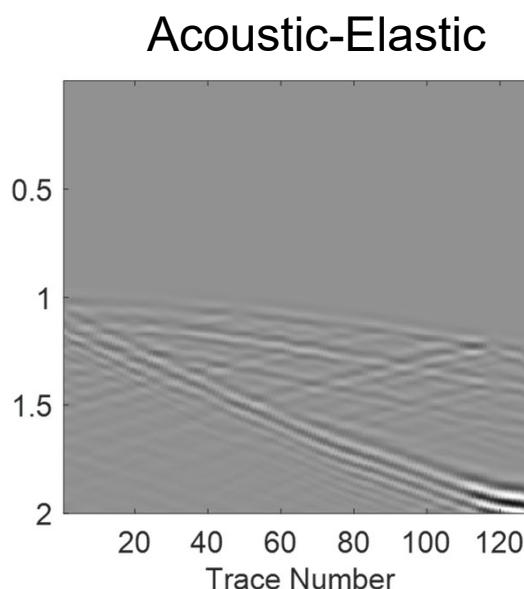
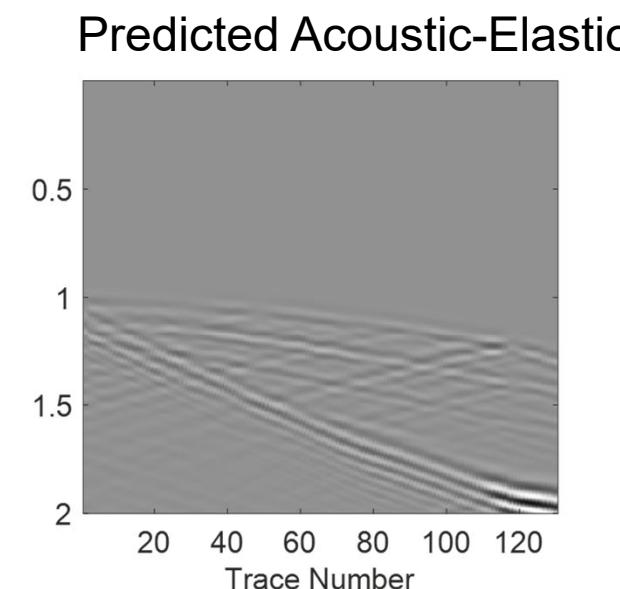
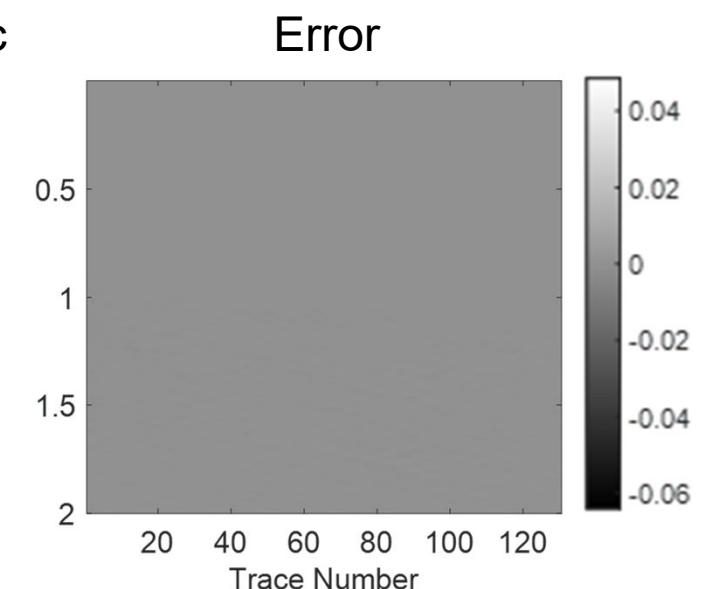


Error

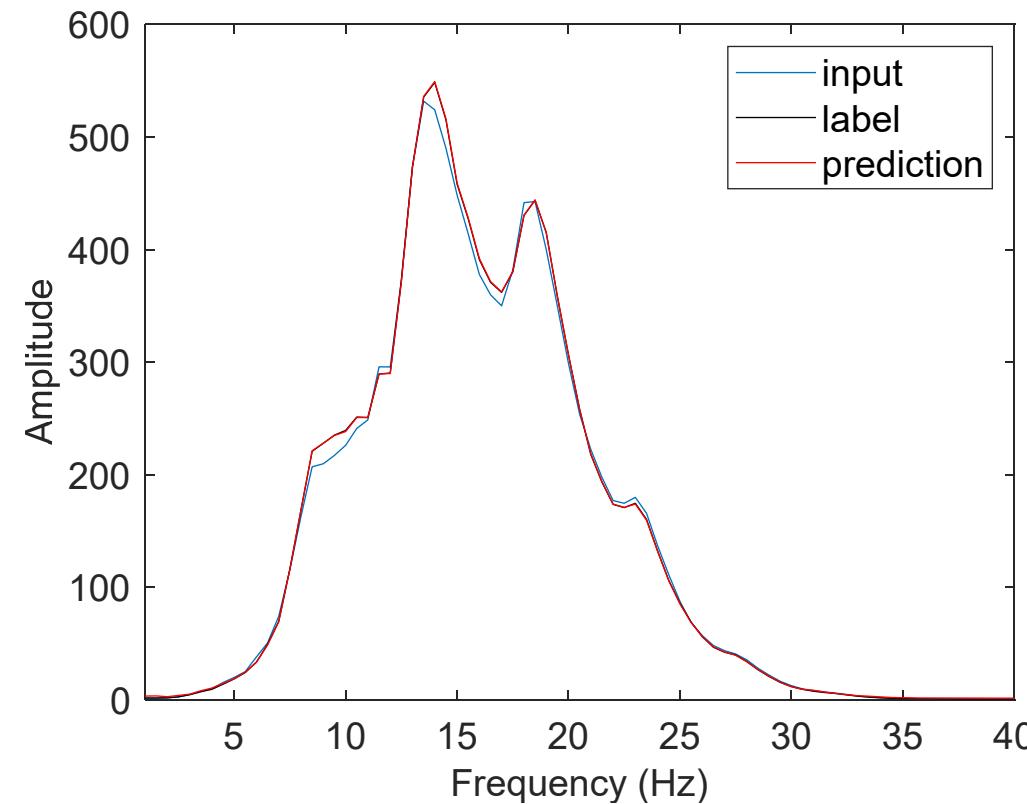


Predicted test data

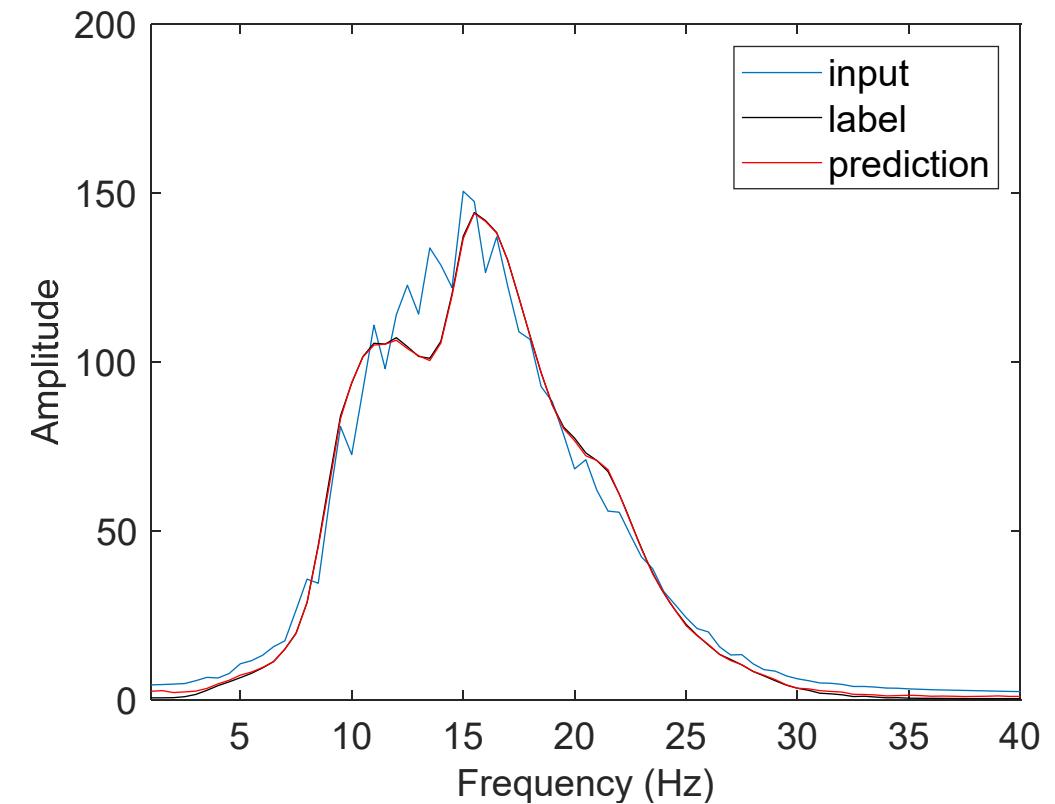
Far offset



Spectra comparison



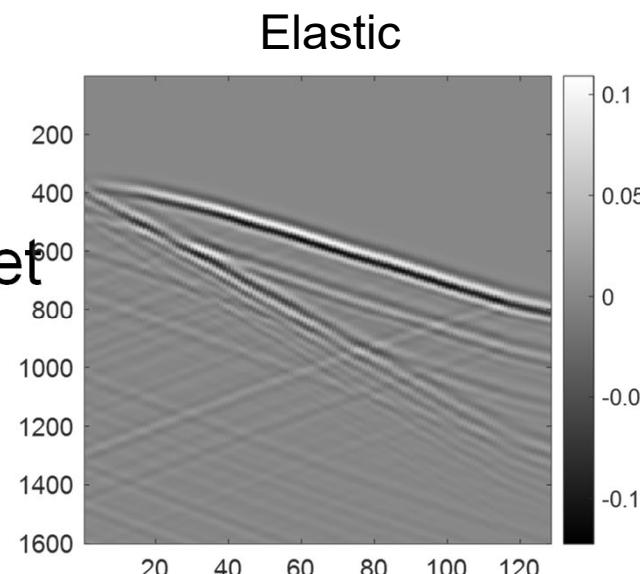
Near offset



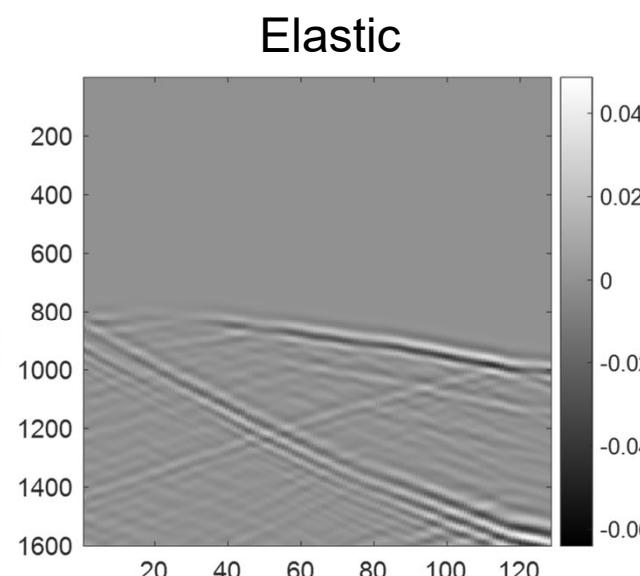
Far offset

Predicted observed data

Near offset

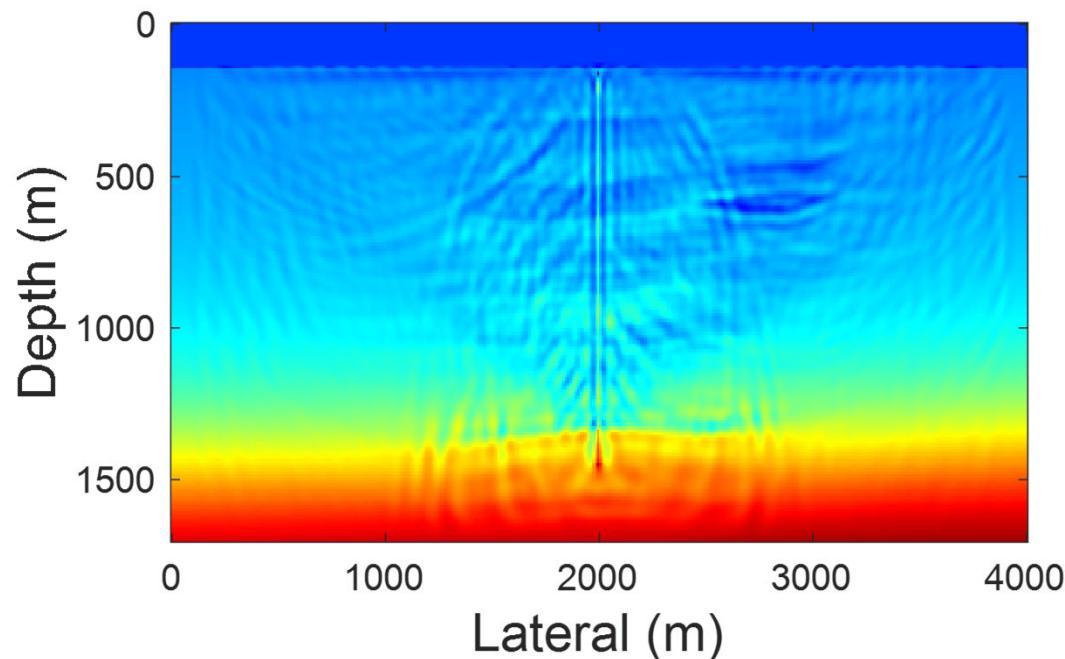


Far offset

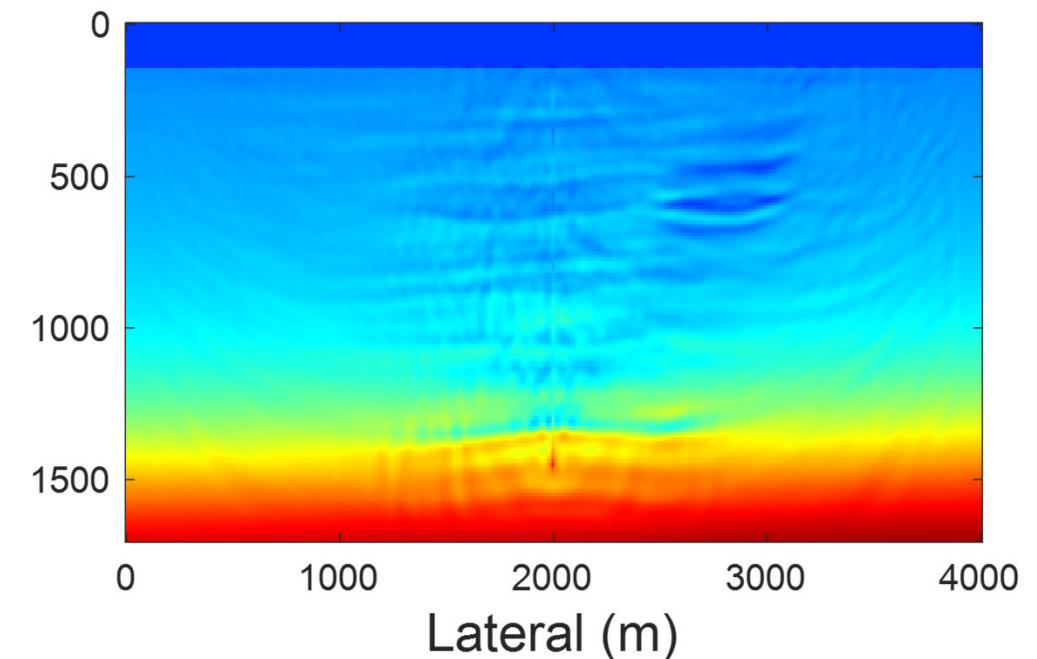


Baseline inversion result

AFWI results

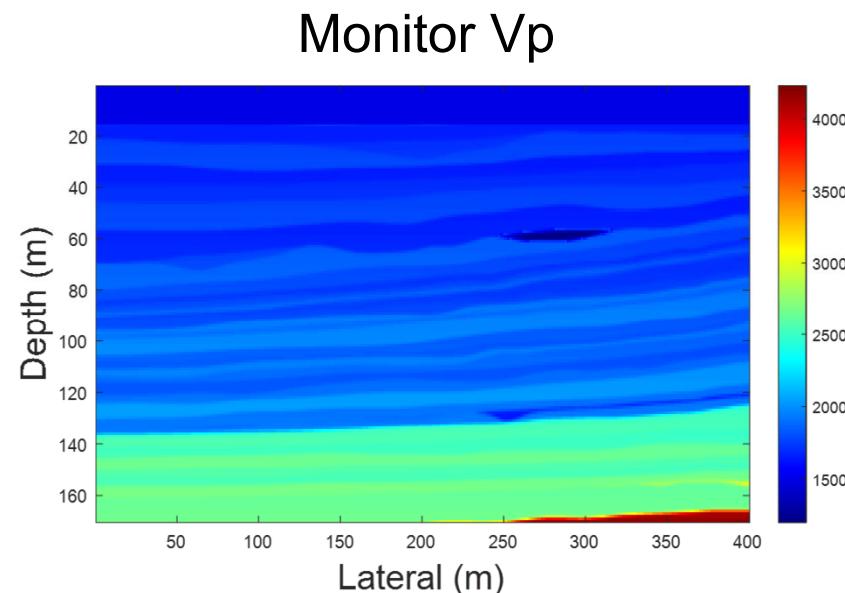
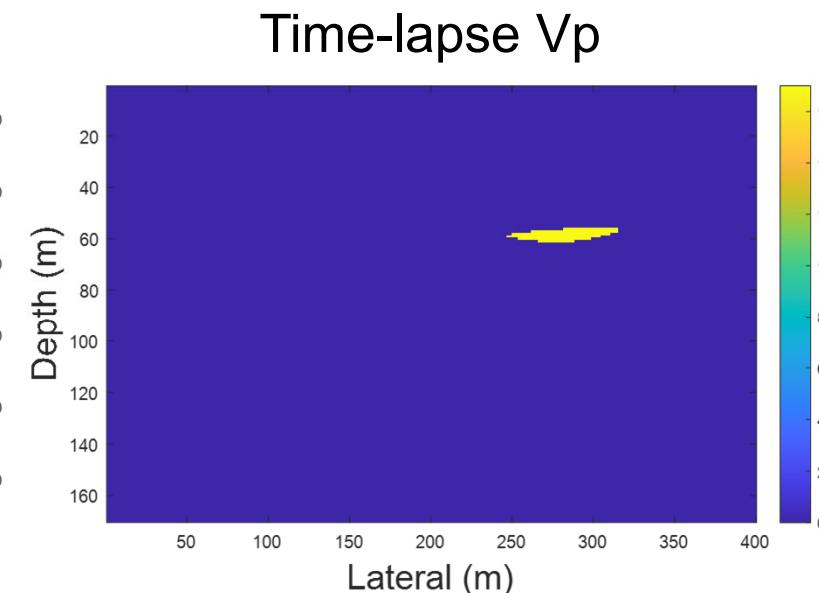


AFWI + Elastic data

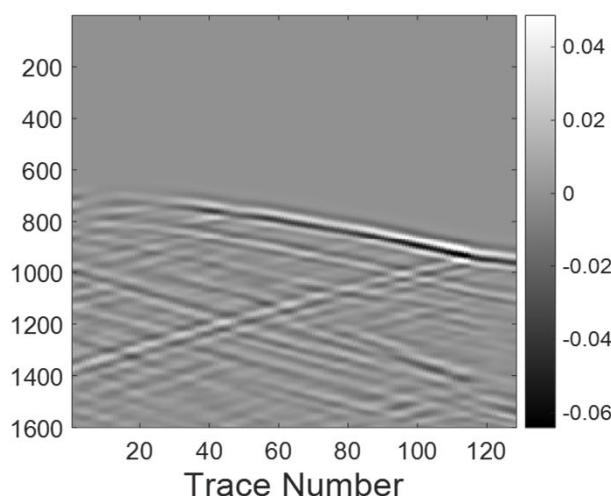


AFWI + predicted acoustic data

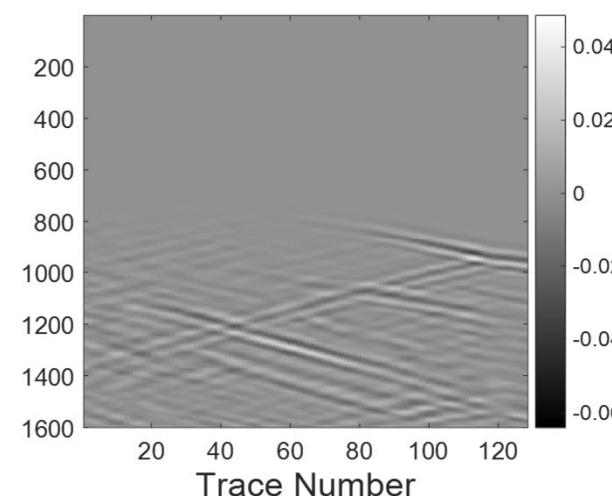
Time-lapse inversion results



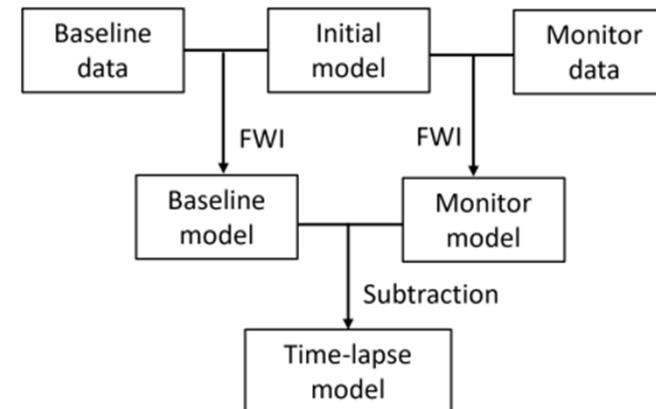
Predicted monitor data



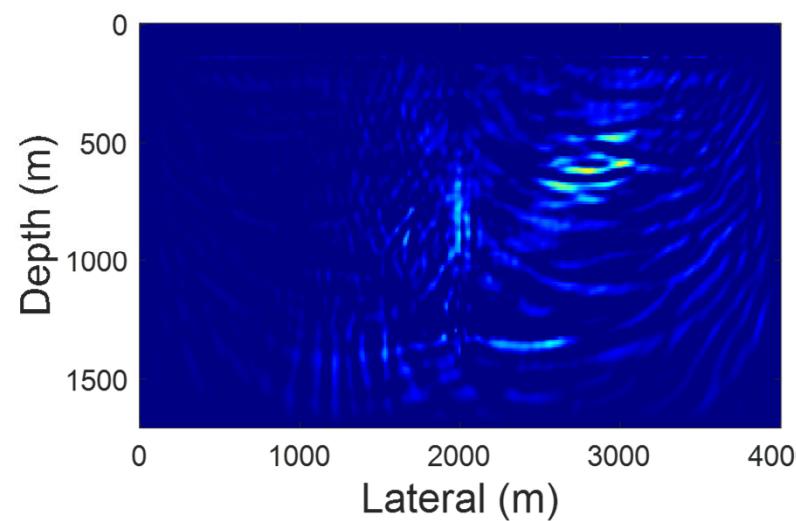
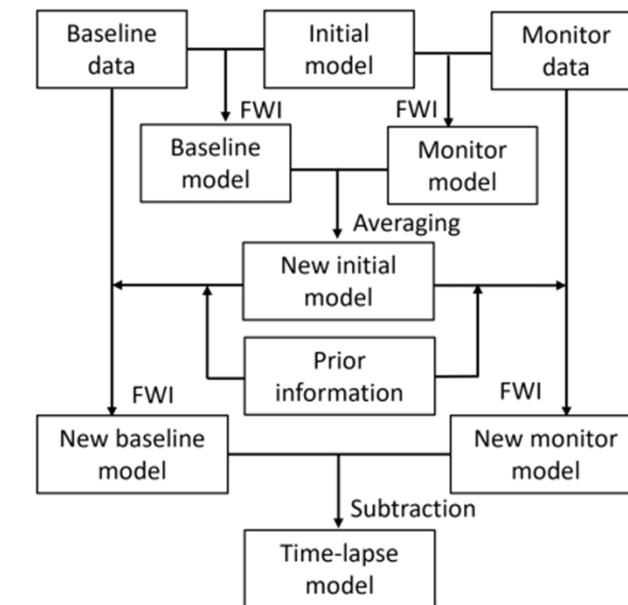
Time-lapse difference



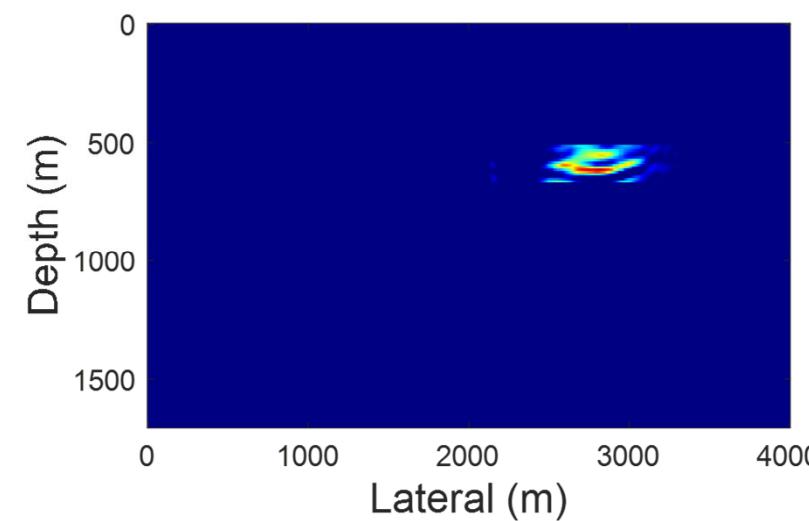
Time-lapse inversion results



Parallel strategy



Target-oriented common model strategy

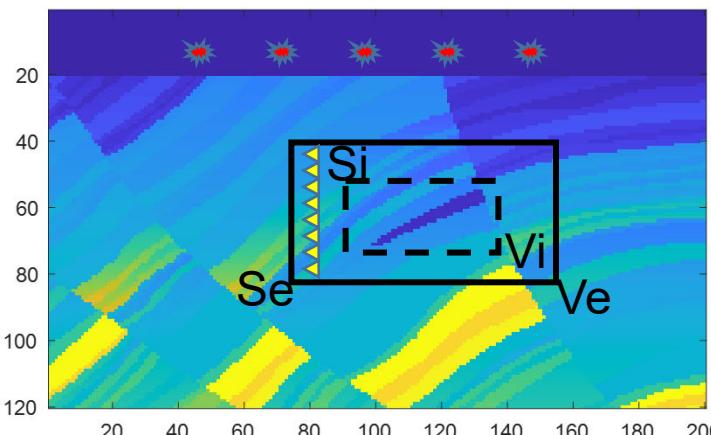


Conclusions

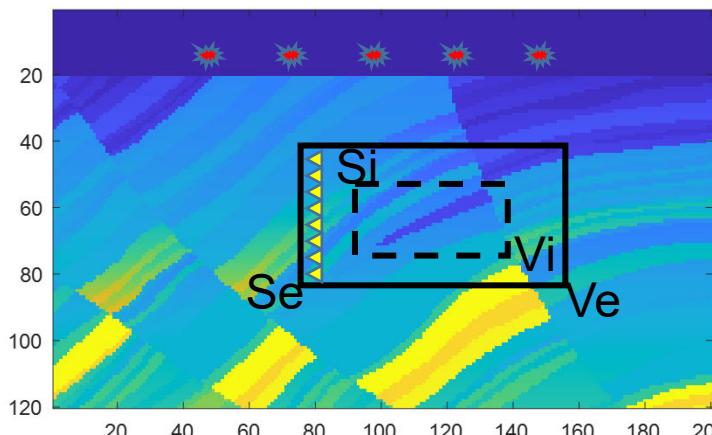
- We develop a deep convolutional network to correct VSP seismic data to mitigate elastic artifacts in acoustic FWI.
- Predicted data show that elastic wave phenomena can be effectively mitigated by the deep learning approach.
- The image quality of inverted model by acoustic FWI can be improved after the elastic data are transformed into their acoustic counterparts.
- We have conducted time-lapse acoustic FWI using acoustic baseline and monitor data predicted by this deep learning approach, the inversion results show this approach can be applied into monitoring velocity changes.
- This approach can decrease the computational cost and improve the monitoring efficiency.

Future work

Incorporate a local solver like the FD-injection method (Robertsson and Chapman, 2000)

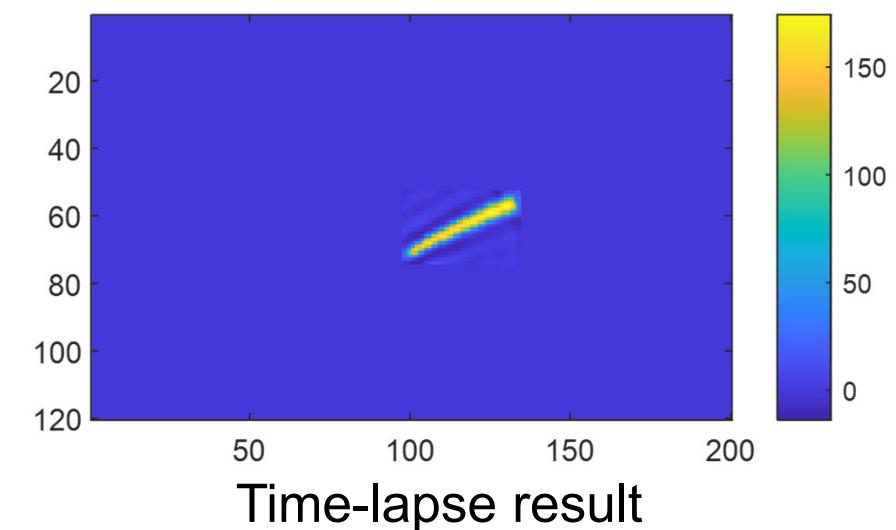


Baseline model



Monitor model

- Si and Vi are the injection surface and subvolume.
- Ve is an FD submesh for the second simulation and Se acts like an AB.



- Based on the baseline model, calculate the wavefields at certain surface as effective sources.
- Choose receivers lies in the area and use the baseline and monitor data difference as observed data.

Acknowledgements

- CREWES sponsors, staff and students
- Natural Sciences and Engineering Research Council of Canada (NSERC)