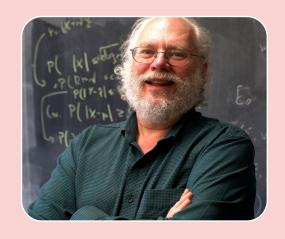
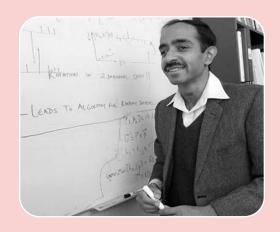

Quantum solutions for energy and environmental challenges


Shahpoor Moradi, PhD Assistant professor (teaching) Department of physics and astronomy University of Calgary


Banff, December 7, 2023

Quantum computation

1981

Feynman (Caltech)
Simulate quantum

systems efficiently

Ž

1994

Shor(AT&T Labs)

Exponential speed up-factoring large numbers

1996

Grover (Bell Labs)

Quadratic speed up -unstructured search

2009

Harrow-Hassidim-

Lloyd (MIT)

Exponential speed up-linear systems

Quantum computation (superposition)

Classical bit: fundamental unit of classical information, having a value of either 0 or 1.

Electric current

Quantum bit: the basic unit of quantum information, capable of existing in superposition.

State	CW %	CCW%
1	100	0
2	0	100
3	40	60

Countless possibilities for qubit state!!

Probability interpretation

State of the qubit (superposition)

$$\Rightarrow + \checkmark$$

$$40\% + 60\%$$

$$\downarrow$$

$$|\Psi\rangle = \sqrt{0.4}|0\rangle + \sqrt{0.6}|1\rangle$$

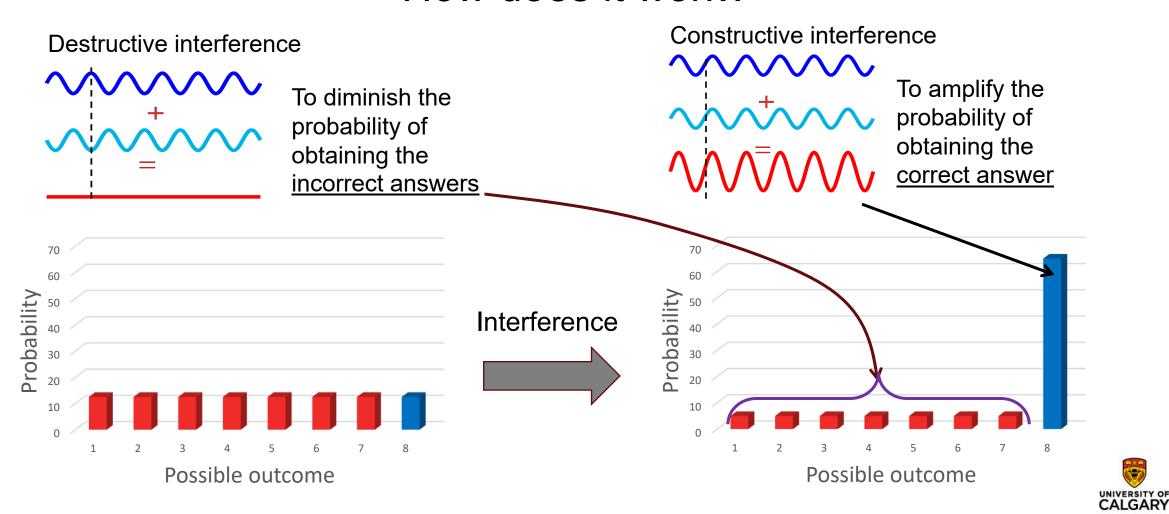
CW:
$$0 \to \begin{pmatrix} 1 \\ 0 \end{pmatrix} \equiv |0\rangle$$

Ket

CCW: $1 \to \begin{pmatrix} 0 \\ 1 \end{pmatrix} \equiv |1\rangle$ notation

Four qubit (16 d vector)

Quantum computation (entanglement)



Entangled coins: two coins, held by individuals on Earth and the Moon, are connected in such a way that observing one coin instantly determines the state of the other.

Quantum computation (interference)

How does it work?

Quantum computation power

How hard is prime factorization and why it is important?

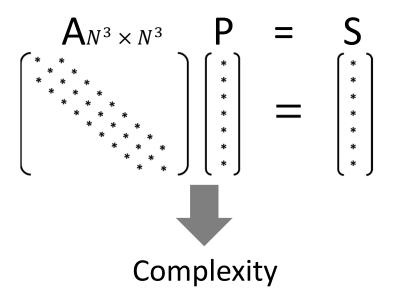
Easy computation (multiplication) used for encryption

 $7212277 \times 5040533 = 36353720223641$

Difficult computation (factoring) is needed for decryption

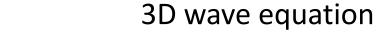
Hardness of factoring a very large number (600-digit)

Quantum computer can break RSA exponentially faster than classical computers (Shor algorithm)


Theory: approximately 4000 qubits to factorize this number

In practice: 4,000,000 qubits due to error correction

Quantum computing for seismic modeling


Quantum linear system solver for seismic wave modeling

Harrow, Hassidim, Lloyd, 2009. PRL.

Quantum	Classical
$O(\kappa \log N)$	$O(\kappa N^3)$

 κ : condition number of matrix A

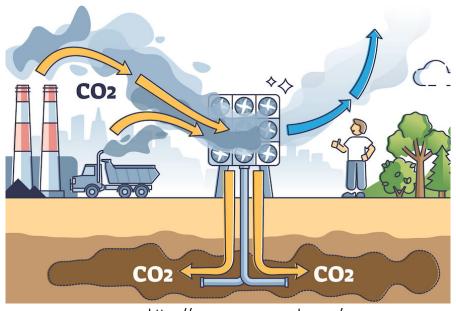
Discretization
$$\left(-\nabla^2 - \frac{\omega^2}{c^2(\mathbf{x})}\right) p(\mathbf{x}, \omega) = s(\mathbf{x}, \omega)$$

Complexity

S. Moradi et al, CJEG, 2019

Quantum	Classical
$O(N^2 \log N)$	$O(N^5)$

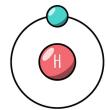
$$\kappa = N^2$$



Quantum computing for energy

Quantum algorithm for battery simulation

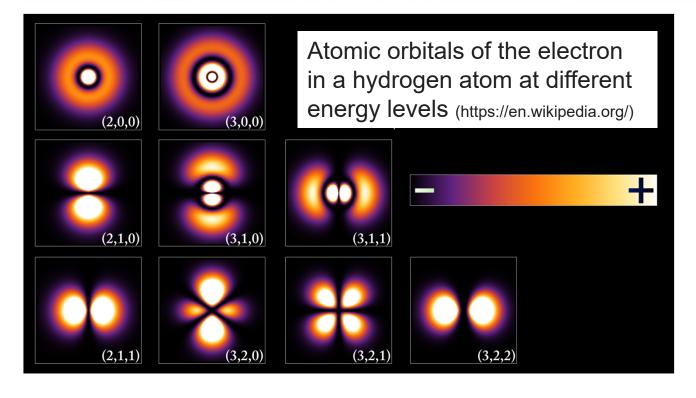
Quantum algorithms for carbon capture strategies



https://www.resourceworks.com/

Quantum computing for chemistry

Hydrogen atom (one electron)



$$\left[-\frac{\hbar^2}{2m_p} \nabla_p^2 - \frac{\hbar^2}{2m_e} \nabla_e^2 - \frac{e^2}{|\vec{r}_e - \vec{r}_p|} \right] \chi(\vec{r}_e, \, \vec{r}_p) = E \chi(\vec{r}_e, \, \vec{r}_p)$$

Energy level

 $E_4 = -0.85 \text{ eV}$ $E_5 = -1.51 \text{ eV}$ $E_7 = -3.4 \text{ eV}$

Ground state $E_1 = -13.6 \text{ eV}$

Number of configurations $C_N^m \approx \frac{N^m}{m!}$

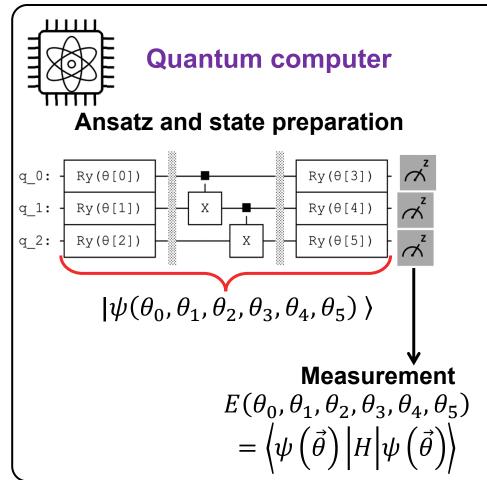
Number of orbitals

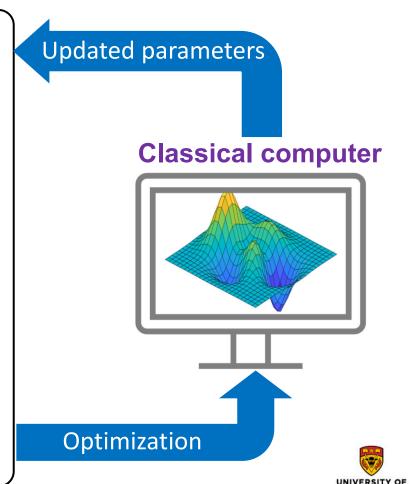
Number of electrons

Chromium molecule

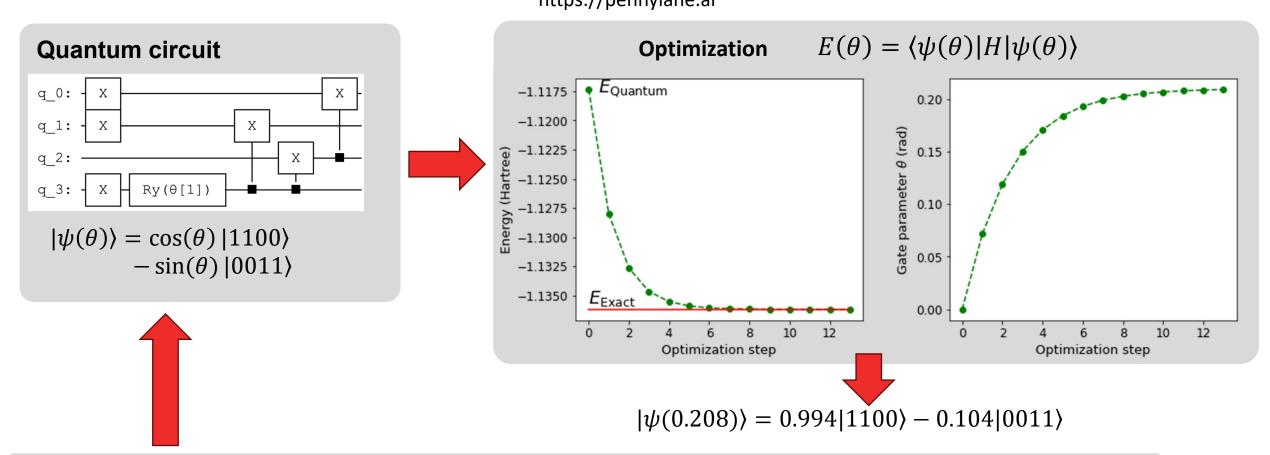

 $C_{30}^{48} \approx 10^9$

Quantum computing for chemistry


Variational Quantum Eigensolver (VQE)


Hamiltonian encoding

Writing Hamiltonian (*H*) in terms of Pauli operators


$$\hat{H} = \sum_{i} \alpha_{i} \hat{P}_{i}$$
 $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad X \otimes Y \otimes Z \otimes Z$
 $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad X \otimes Y \otimes Z \otimes Z$
 $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad Y \otimes Z \otimes Z \otimes X$

Quantum computing for chemistry

The ground state energy of the hydrogen molecule H₂ https://pennylane.ai

Hamiltonian for molecule H_2

Conclusions: quantum landscape

Seismic modeling and inversion:

Algorithm: significant speed-up not attainable with classical computers.

Implementation: requires a fault-tolerant quantum computer (>10 yrs.)

Quantum chemistry, battery design, and CCUS:

Algorithm: exploring hybrid solvers, such as VQE.

Implementation: on noisy quantum devices with a few thousand qubits (< 5 yrs.)

- Quantum computation in Canada: National Quantum Strategy:
 - \$139 billion industry
 - 200,000 jobs
 - \$42 billion in returns by 2045.

Quantum computation in Calgary:

- Transformation of Calgary into a quantum city.
- Leadership of University of Calgary's in advancing quantum science and technology.

Professional Masters in Quantum Computing

2024

Launch year


20-25

Person cohorts for smallgroup experience

3

Options – Certificate, Diploma, or Master's

Internship options for every student

Instructors are global leaders in their fields

Part of Alberta's nationleading quantum ecosystem

Thanks

Professional Masters in Quantum Computing

Certificate in **Quantum Computing**

(Essentials of Quantum Computing; Quantum Software I; Application of Quantum Computing; **Business of Quantum** Computing)

Graduate Diploma in Quantum Computing

(Quantum Software II; Quantum Hardware; **Practical Quantum** Computing; Business of **Quantum Computing II)**

Master of **Quantum Computing**

Current Issues in Quantum Computing + Professional Internship *or* Research Internship

