

Clifford Fourier neural operator as a tool to learn and describe elastic wavefield displacements

Tianze Zhang, Kris Innanen, Daniel Trad

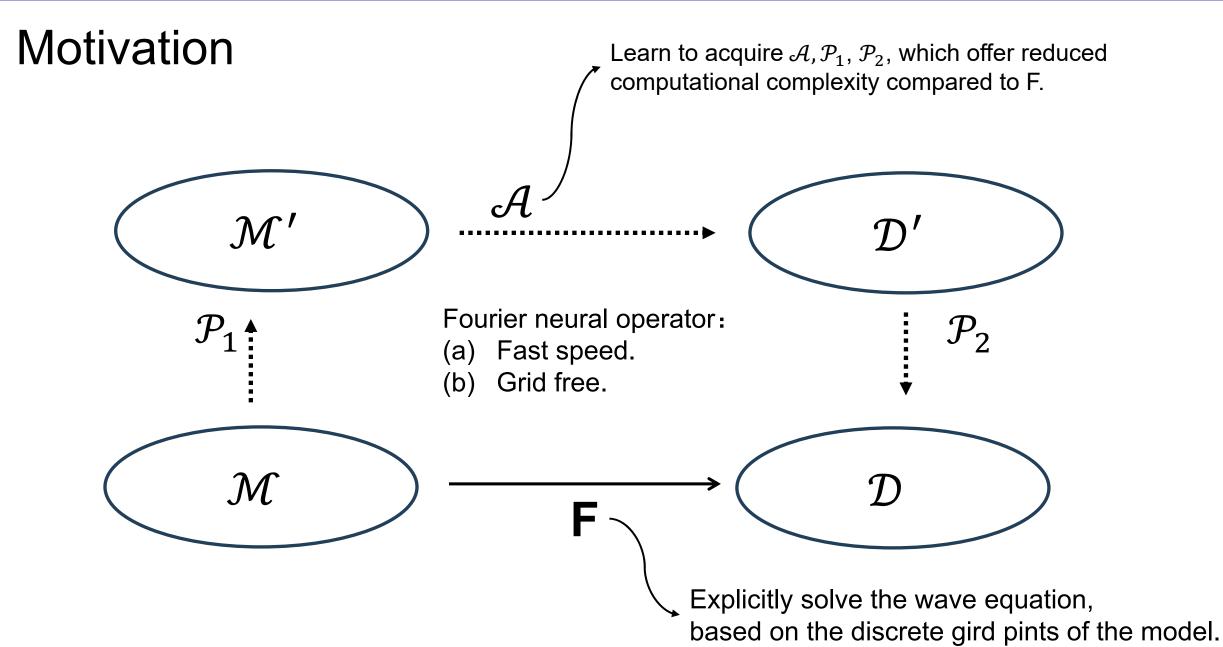
Banff, Canada. 2023-12-08

Content

- 1. Fourier neural operators
- 2. Clifford Fourier neural operators.
- 3. Numerical training results.
- 4. Conclusion and feature study.

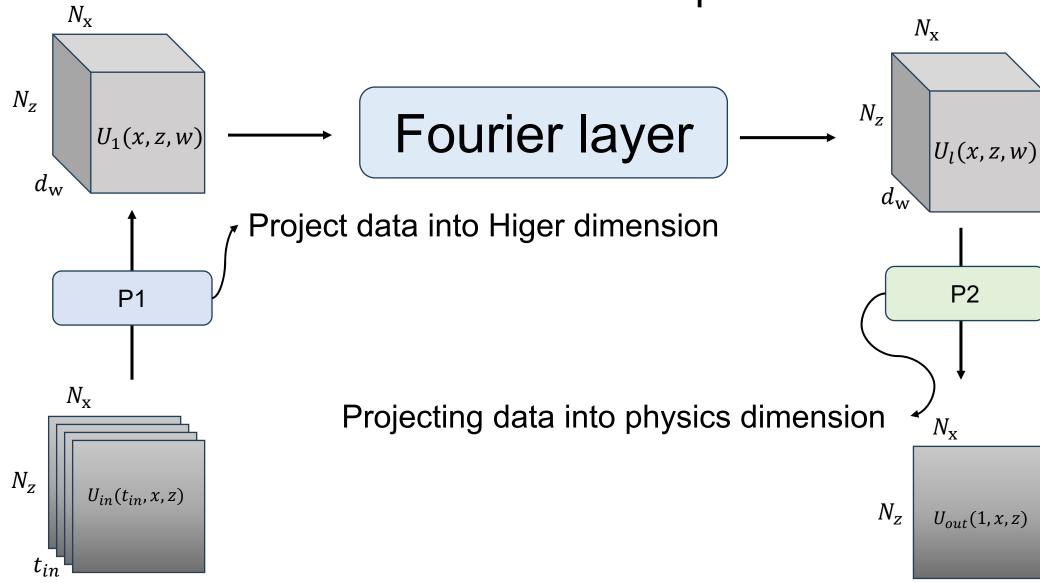
Part one Introduction to Fourier neural operator

1. Fourier neural operator

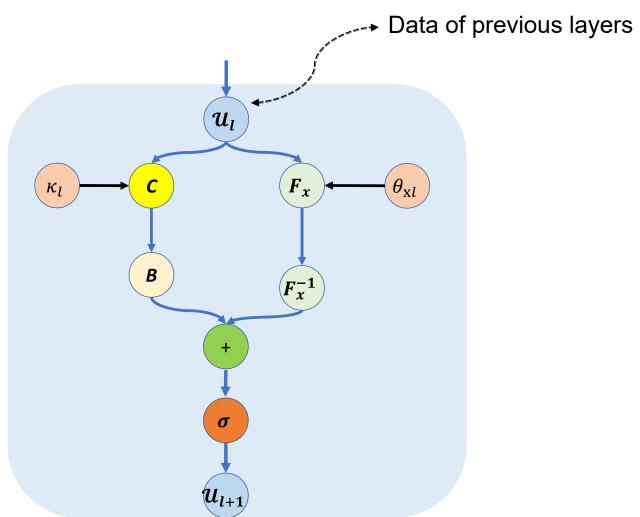


1. Fourier neural operator

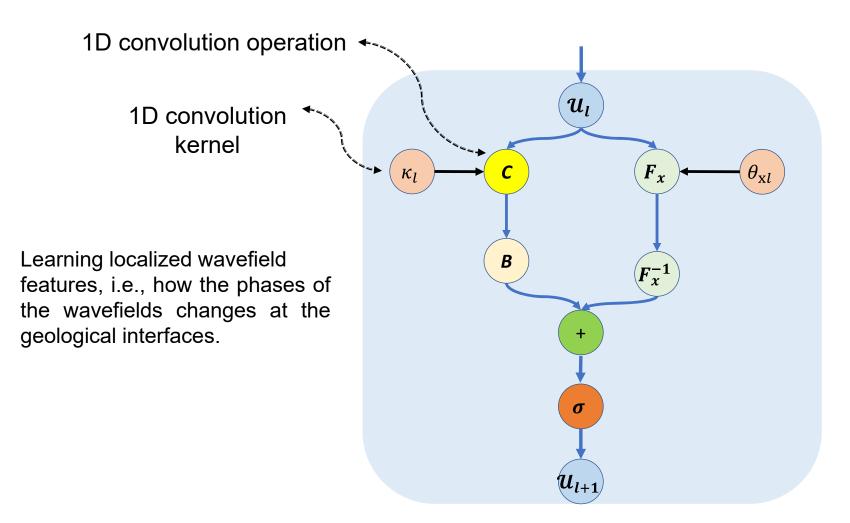
The basic structure of the Fourier neural operator.



Conventional 1 layer of FL

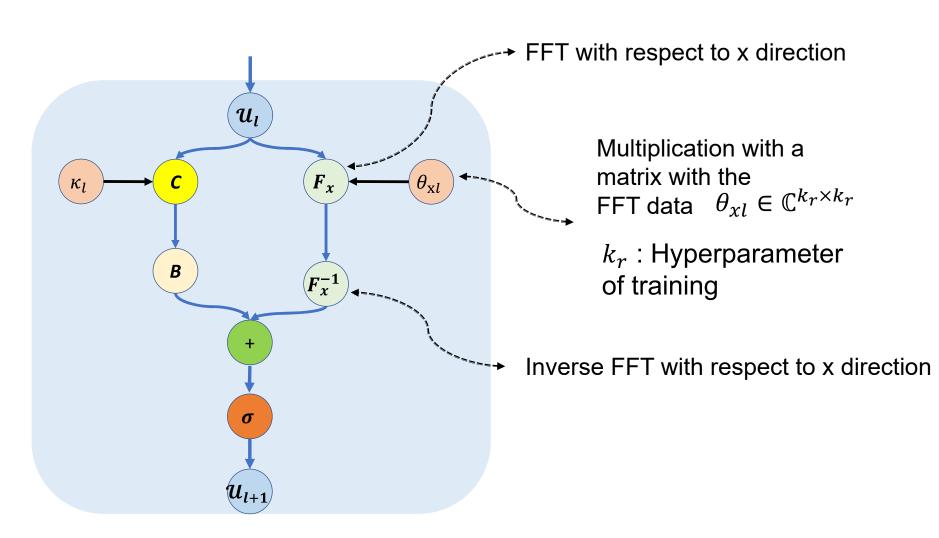


Conventional 1 layer of FNO

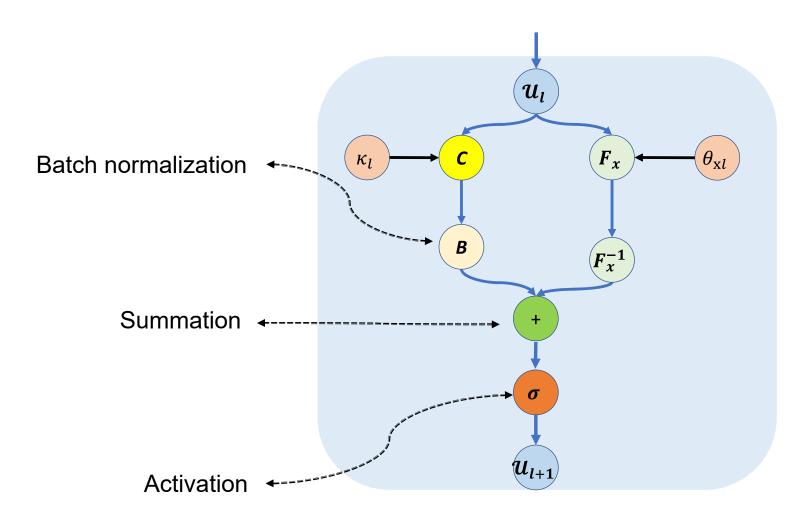


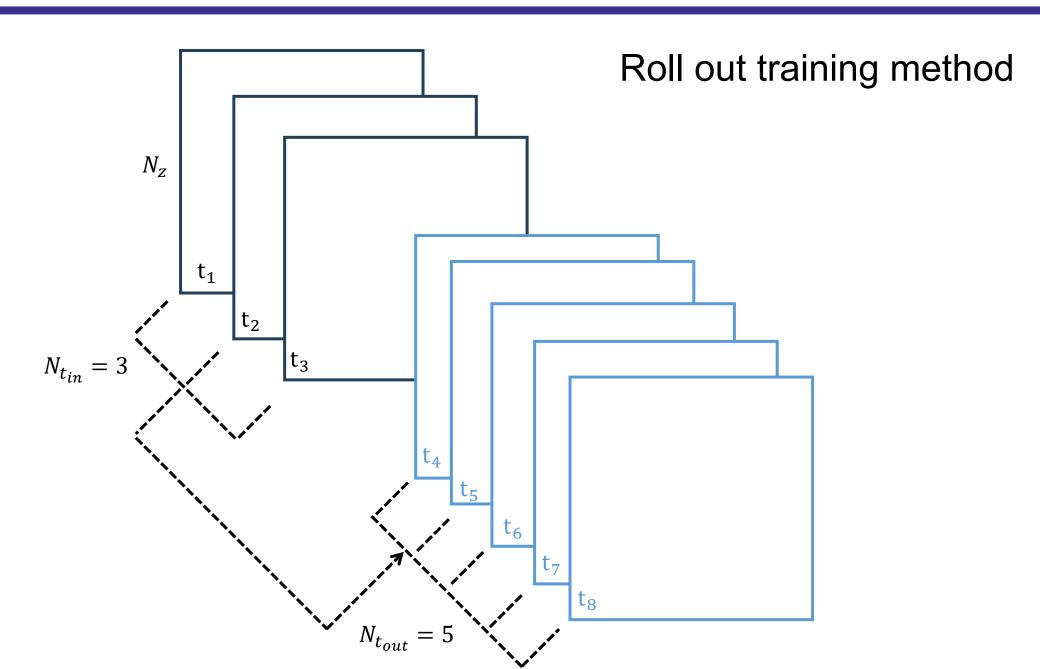
Conventional 1 layer of FNO

Learning nonlocalized wavefield features, i.e., the speed and the direction of the wavefields.

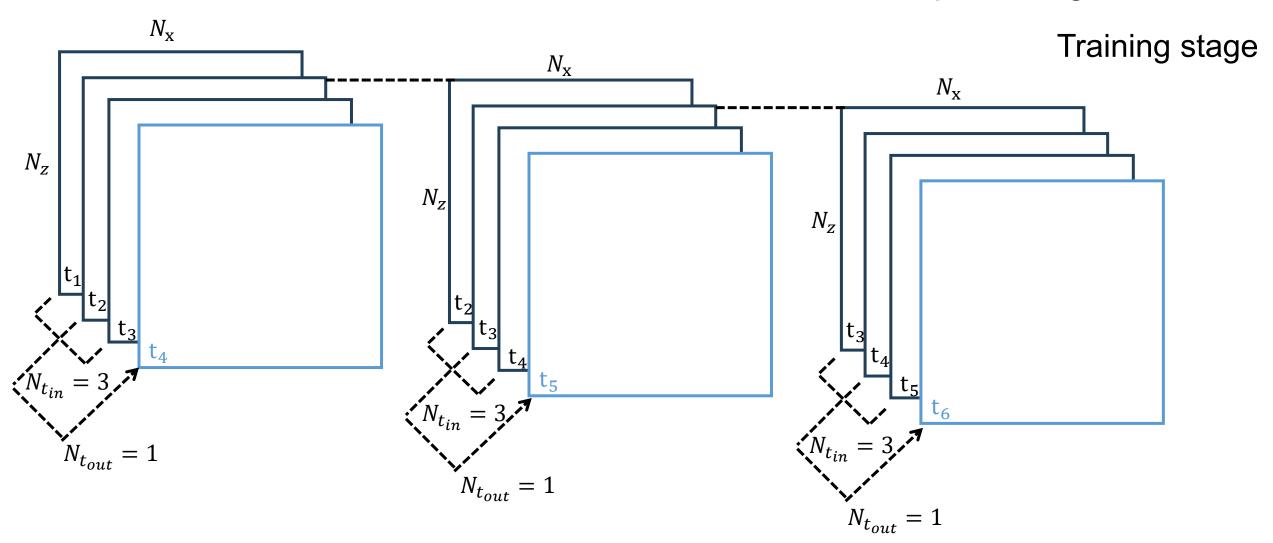


Conventional 1 layer of FNO

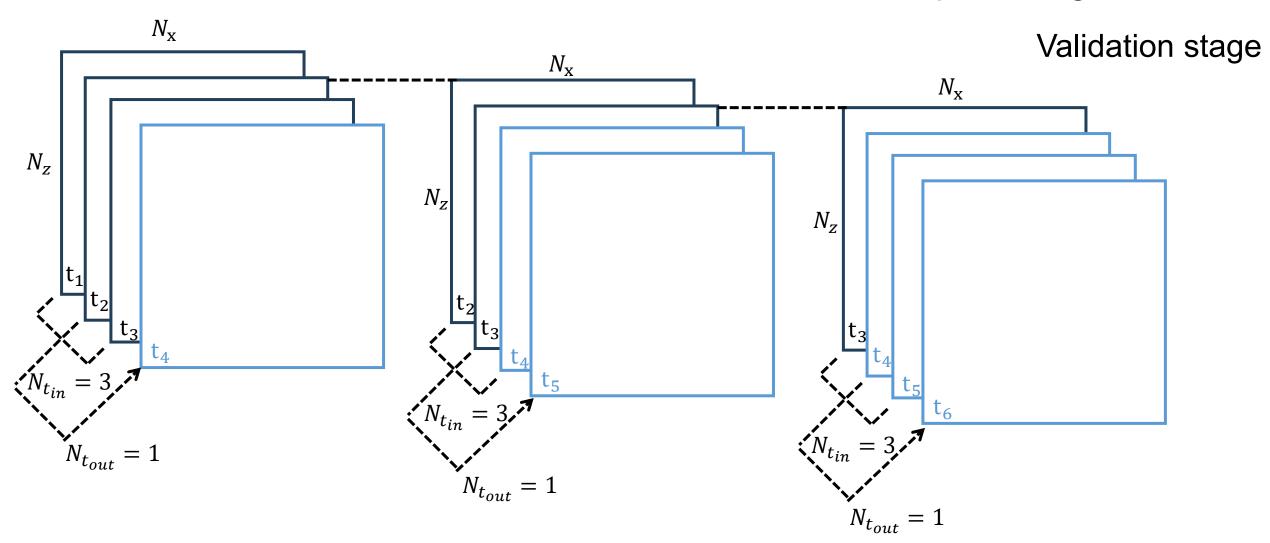




One step training method



One step training method



Part two Clifford Fourier neural operators.

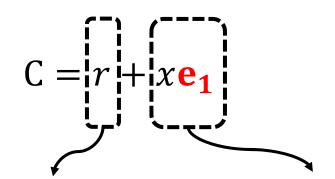
Clifford Fourier neural operator is the complex number extension of the real number valued Fourier neural operator.

Quaternion algebra can be seen as a specific instance of a Clifford algebra.

A quaternion Q is a complex number defined in a four-dimensional space as $Q = r + xe_1 + ye_2 + ze_1e_2$

> r, x, y, z real numbers 1, e₁, e₂, e₁e₂ quaternion unit basis

Complex number



Real part Imaginary part

Conjugate
$$C^* = r - xe_1$$

Quaternion number

$$Q = r + xe_1 + ye_2 + ze_1e_2$$
Real part Imaginary pa

Conjugate

$$Q^* = r - x\mathbf{e_1} - y\mathbf{e_2} - z\mathbf{e_1}\mathbf{e_2}$$

Quaternion unit basis:

$$e_1^2 = e_2^2 = -1$$

Quaternion product

$$e_1^2 = e_2^2 = -1$$
 $(e_1e_2)^2 = -1$ roduct Pseudoscalar

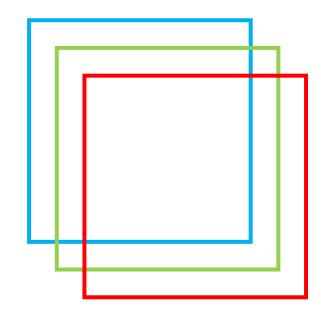
$$Q_1 = r_1 + x_1 e_1 + y_1 e_2 + z_1 e_1 e_2$$
 $Q_2 = r_2 + x_2 e_1 + y_2 e_1 + z_2 e_1 e_2$

$$Q_1 \otimes Q_2 = (r_1r_2 - x_1x_2 - y_1y_2 - z_1z_2) + (r_1x_2 + x_1r_2 + y_1z_2 - z_1y_2)\mathbf{e_1} + (r_1y - x_1z_2 + y_1r_2 + z_1x_2)\mathbf{e_2} + (r_1z_2 + x_1y_2 - y_1x_2 + z_1r_2)\mathbf{e_1}\mathbf{e_2}$$

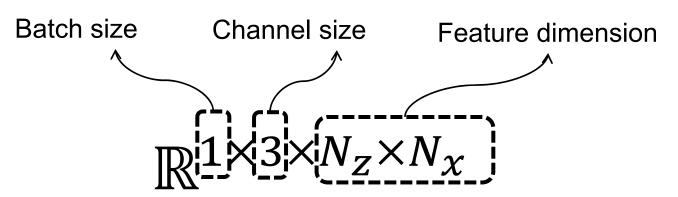
Inner product
$$Q_1 \otimes Q_2 = Q_1 \cdot Q_2 + Q_1 \wedge Q_2$$
 Wedge product

The nature ability to represent multi-dimensional data

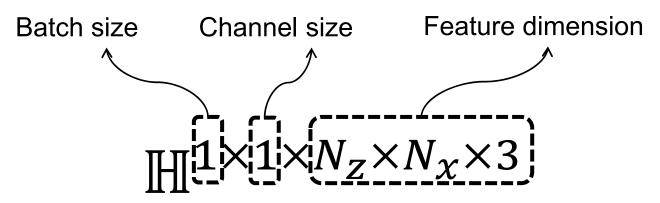
RGB image



Conventional ML methods represent multi-dimensional data along the channel dimension



Quaternion represent multi-dimensional data as an entity.



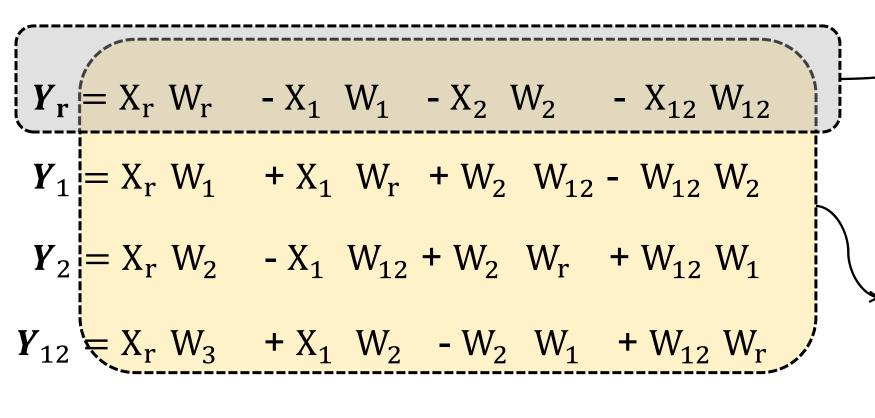
Quaternion neural network product

$$Y = X \otimes W$$

$$= X \cdot W + X \wedge W$$

$$= Y_{r} + Y_{1}e_{1} + Y_{1}e_{2} + Y_{12} e_{1}e_{2}$$

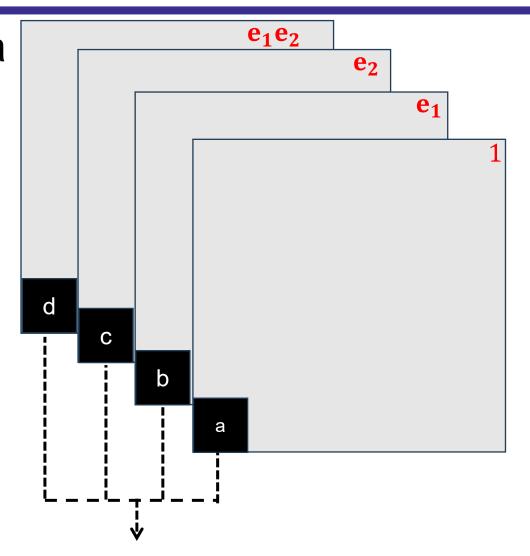
Real valued neural network for 1 channel calculation



Quaternion valued neural Network for 1 channel calculation.

View multidimensional data as multi-vector:

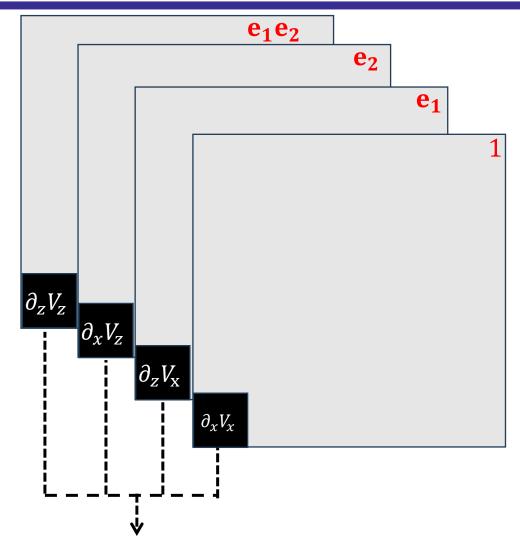
$$\mathbb{H}^{1 \times 1 \times N_Z \times N_\chi \times 4}$$



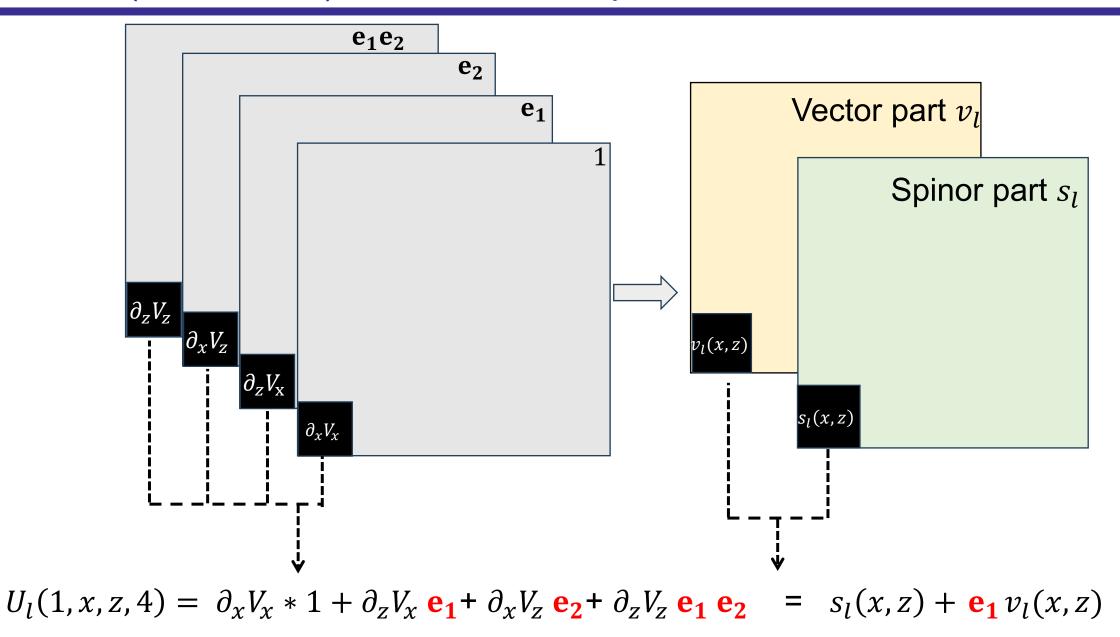
$$h_l(1, z, x, 4) = a + b e_1 + c e_2 + d e_1 e_2$$

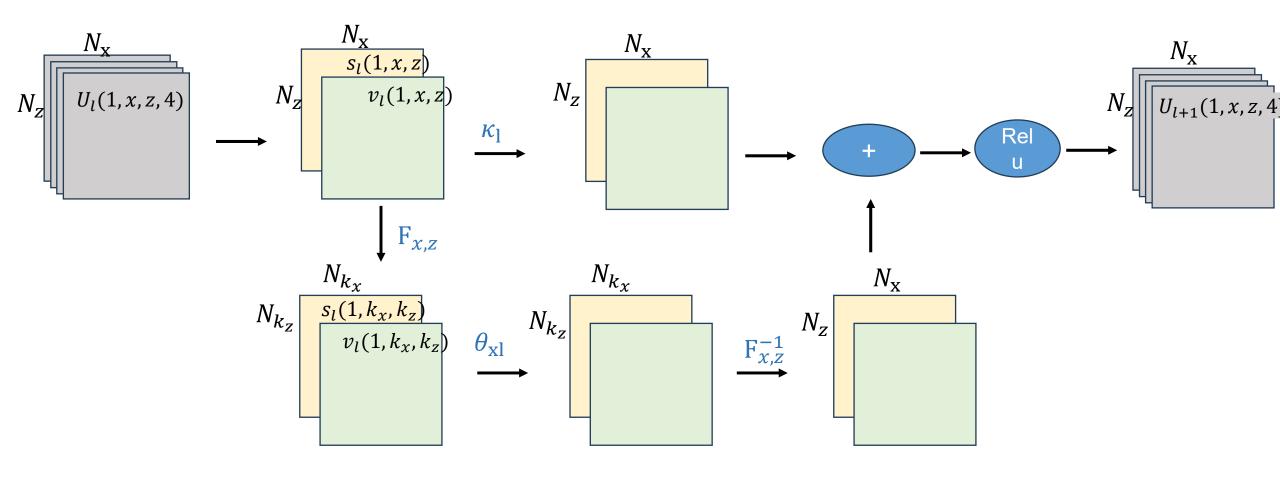
Partial derivative velocity wavefields viewed as Quaternions:

$$\mathbb{H}^{1 \times 1 \times N_Z \times N_\chi \times 4}$$



$$h_l(1, z, x, 4) = \partial_x V_x + \partial_z V_x \mathbf{e_1} + \partial_x V_z \mathbf{e_2} + \partial_z V_z \mathbf{e_1} \mathbf{e_2}$$





Part three Numerical training results

Examples of the training model

Obtained from the OpenFWI dataset, Chengyuan Deng, et al. 2021

100 Vp models are used for training (Grid size 50×50) Vs and density are obtained by scaling the Vp model.

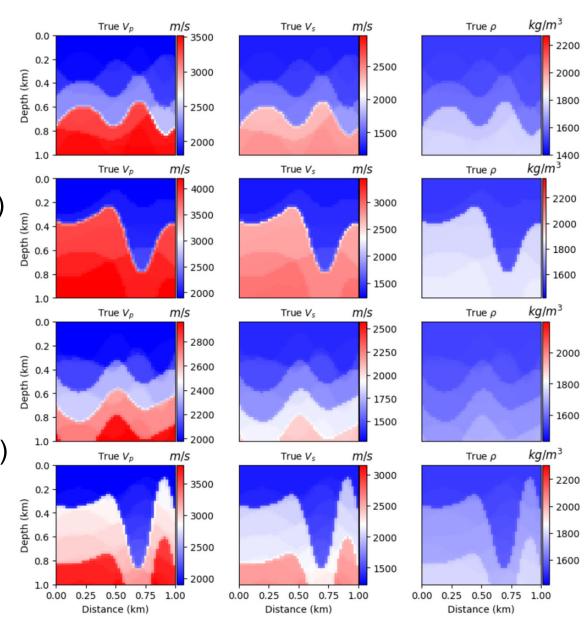
10 models are used for validation.

Labeled data (wavefields) are obtained with the finite difference method.

(10 order accuracy in space, 2 order accuracy in time)

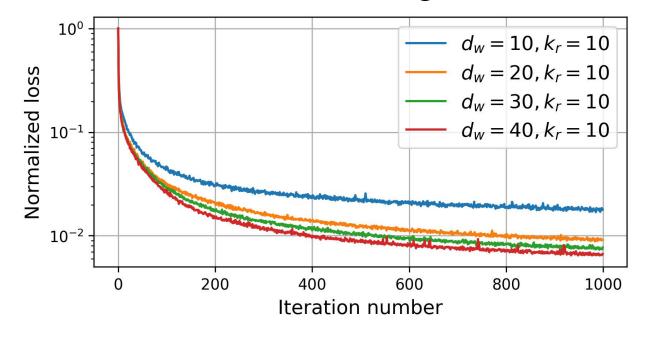
The Clifford neural networks are developed by a Microsoft team.

Johannes, et al ICLR 2023

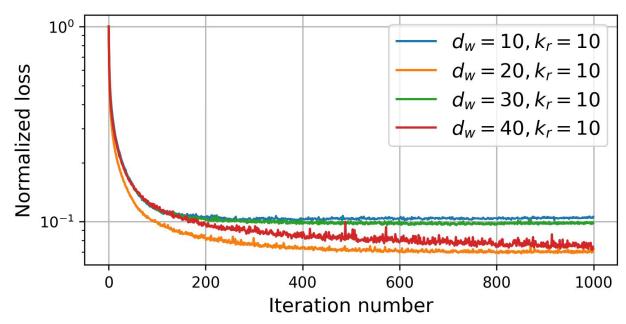


Training loss and validation loss with different d_w

Training loss

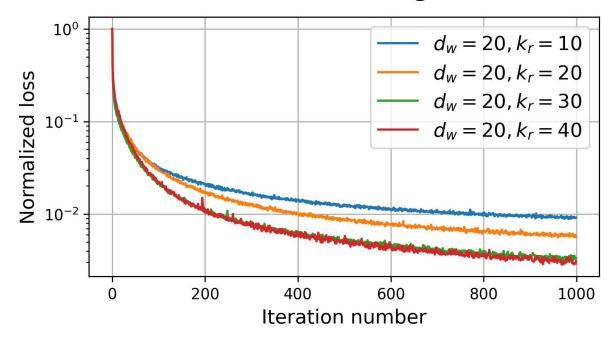


Validation loss

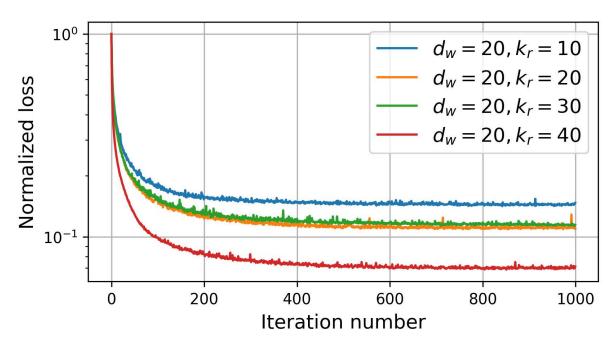


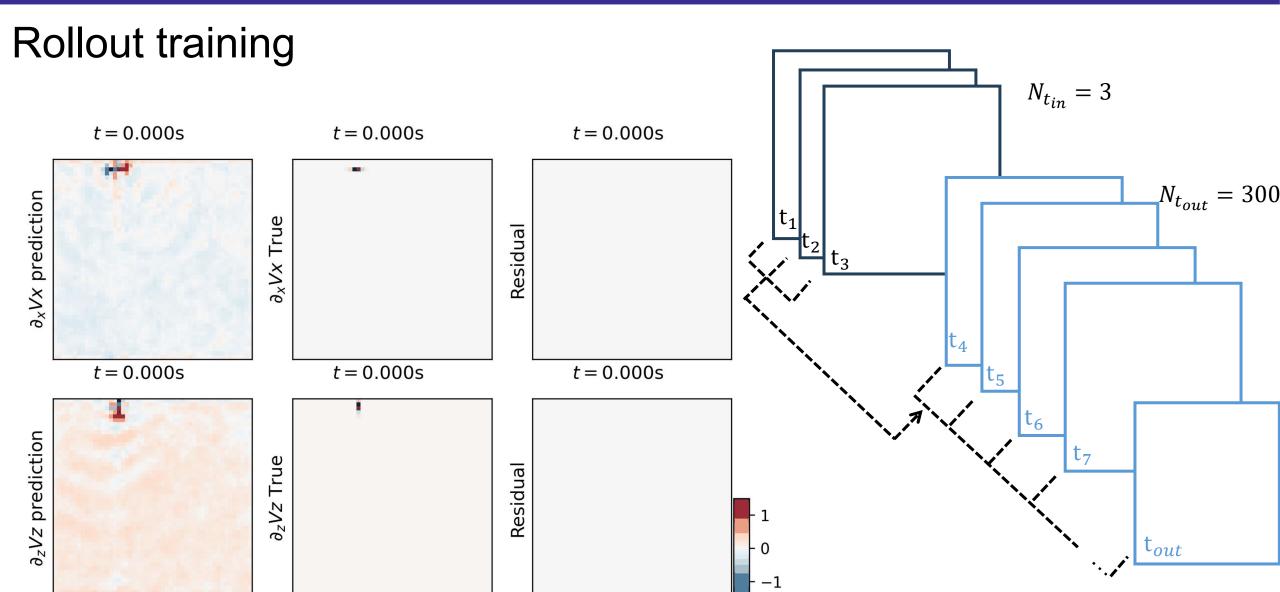
Training loss and validation loss with different k_r

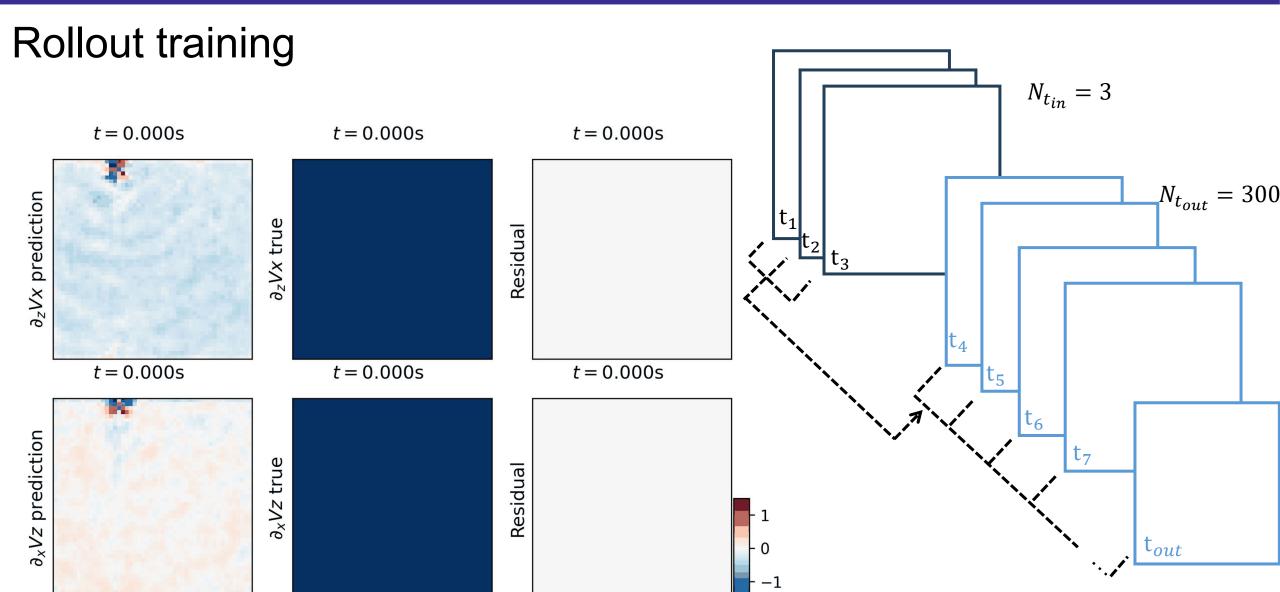
Training loss



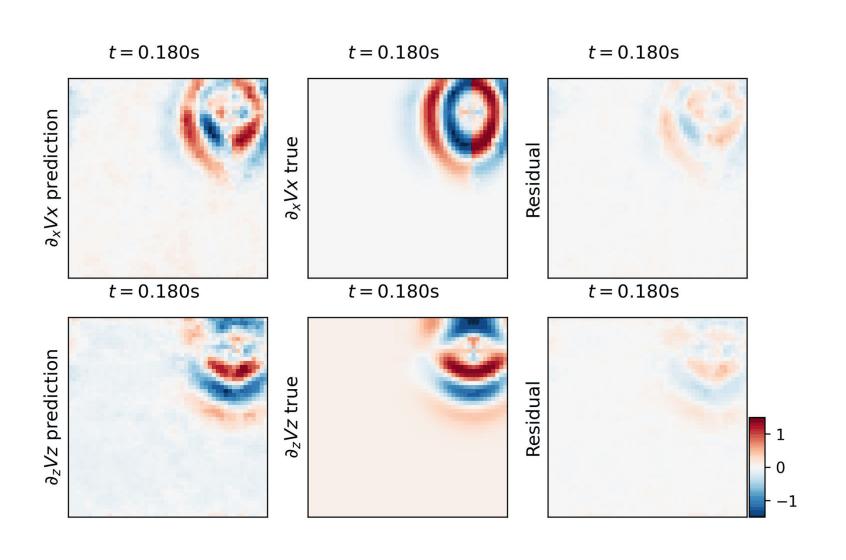
Validation loss

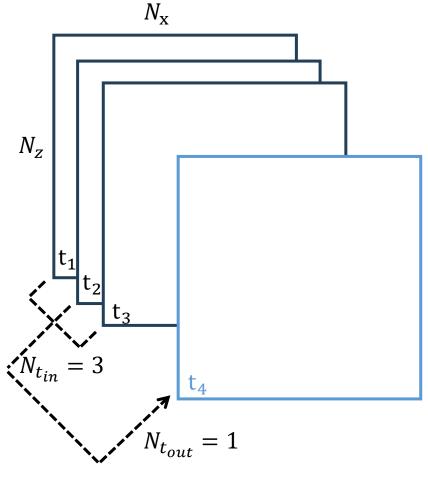




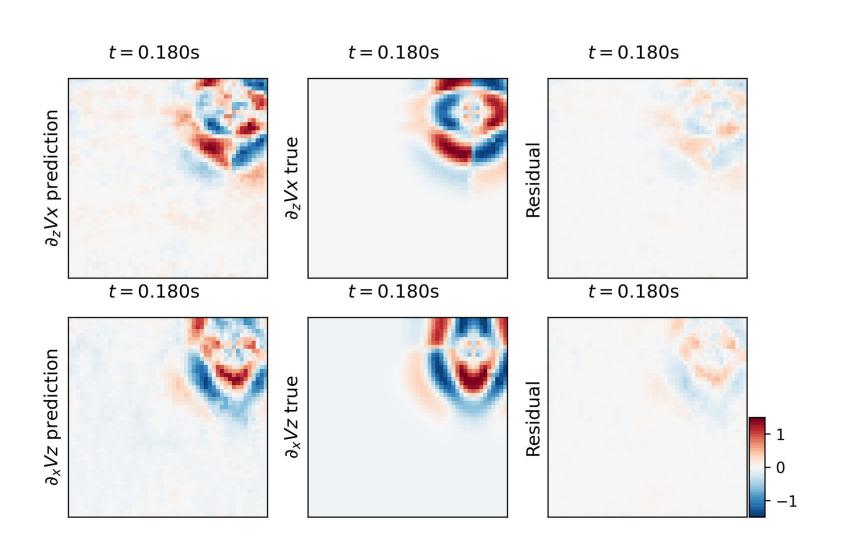


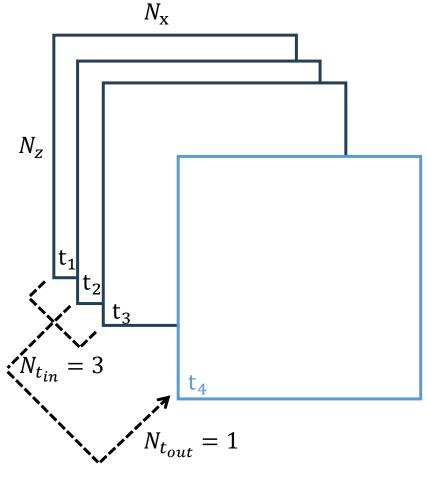
One-step training(Validation)





One-step training(Validation)





Conclusion

- Quaternion numbers are used to represent the multi-dimensional elastic wavefields.
- O Clifford (quaternion) neural network is trained to learn to solve the elastic wave equation. The overall predicted results are promising.

Feature study

 Discover the mesh-free feature of the FNO and implement it into inversion.

• Thanks, all CREWES sponsors and students