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Exact solutions for reflection coefficients, in 2D 
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Summary  
In this paper, we derive the exact formula for reflection coefficients when there is a velocity ramp present 
in the 2D case. We require the density and modulus satisfy the relation established in (Lamoureux et al., 
2012) and (Lamoureux et al., 2013) using a fixed parameter 𝛼𝛼. We consider both the case when the 
plane wave hits a transition zone at normal incidence for parameter 𝛼𝛼, and when the plane wave hits the 
transition zone at non-normal incidence given varying density. The motivation is to extend the work of the 
authors in (Lamoureux et al., 2012) and (Lamoureux et al., 2013) and to demonstrate an explicit formula 
for reflection coefficients in a continuously varying velocity field. 

Introduction 
In seismic imaging, a reflection coefficient describes the relative amplitude and phase of the reflected 
portions of a seismic wave returned from a subsurface anomaly and is a key indicator of geological 
features beneath the earth’s surface. In complex models, reflection coefficients are computed numerically 
and used to infer information about where structures reside underground. Numerical results do not offer the 
same precision as an exact solution, and exact formulas for reflection coefficients can offer insights into 
problems in reflection seismology. For instance, when studying inverse problems, we know that to some 
degree these problems are not well-posed. An exact solution for a reflection coefficient enables us to 
explore the nature of ill-posedness of such problems. As such, it allows us to study the kind of reflection 
obtained when a smooth transition zone is present. 
In this paper, we will extend the work of (Lamoureux et al., 2012) and (Lamoureux et al., 2013) to 2D. We 
will begin with a discussion of the 2D problem and the methods for finding formulas for reflection 
coefficients when a smooth transition zone is present. We will then consider two examples: when the plane 
wave hits the transition zone at normal incidence and when it hits at non-normal incidence. 
Exact Solutions in Reflection Seismology 
Recall the 2D elastic wave equation 

     𝜌𝜌(𝑥𝑥, 𝑧𝑧) 𝜕𝜕
2𝑢𝑢
𝜕𝜕𝑡𝑡2

= 𝛻𝛻(K(x, z) ⋅ 𝛻𝛻u)     (1) 

where 𝜌𝜌 represents the density and 𝐾𝐾 represents the bulk modulus. As in (Lamoureux et al., 2012), we 
define 𝜌𝜌(𝑥𝑥, 𝑧𝑧) = 𝑐𝑐(𝑥𝑥, 𝑧𝑧)𝛼𝛼−2 and 𝐾𝐾(𝑥𝑥, 𝑧𝑧) = 𝑐𝑐(𝑥𝑥, 𝑧𝑧)𝛼𝛼 for some parameter 𝛼𝛼. This relation preserves the wave 
speed given via the ratio 𝐾𝐾(𝑥𝑥, 𝑧𝑧)/𝜌𝜌(𝑥𝑥, 𝑧𝑧) = 𝑐𝑐(𝑥𝑥, 𝑧𝑧)2. We are specifically interested in the case of a velocity 
field which has constant velocity prior to a linear increasing ramp and constant after the ramp, as 
indicated in Figure 1.  
 
The region of the velocity field with the linear increasing ramp is called the transition zone. In the normal 
plane wave incidence case, the wavefront is orthogonal to this transition zone. Therefore, the solution of 
(1) is constant in the 𝑥𝑥-direction. In the non-normal incidence case, the plane wave hits the transition 
zone at a non-zero angle 𝜃𝜃. Thus, both the x- and z-directions vary in the solution of (1) unlike in the 
normal incidence case. 
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We model these problems using the solution to equation (1) for parameter 𝛼𝛼 to define regional solutions. 
These solutions relate what is occurring above the transition zone, in the transition zone, and below the 
transition zone, denoted 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡, 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, and 𝑢𝑢𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏 respectively. Within the top region, we infer a reflection 
coefficient 𝑅𝑅 to depict the relative magnitude and phase of the wave which is reflected off the transition 
zone. In the regional solution for below the transition zone, there will be a transmission coefficient 𝑇𝑇 to 
indicate the portion of the wave which is transmitted through the transition zone. Once we define the 
regional solutions, we establish continuity conditions to preserve displacement continuity and continuity 
of force. Applying these continuity conditions to the regional solutions, we get a system of equations 
which we can solve to find the reflection and transmission coefficients.  
 
In the next section, we will solve for the reflection coefficient in the normal incidence case for parameter 
𝛼𝛼. Afterwards, we will find the solution for the reflection coefficient in the non-normal incidence case 
when just the density 𝜌𝜌(𝑥𝑥, 𝑧𝑧) varies.  

Examples 
We fix the top and bottom regions to have constant velocities 𝑐𝑐1 and 𝑐𝑐2, respectively, and the transition 
region to have a depth 𝐷𝐷. The change in velocity in the ramp is given by a slope 𝑚𝑚 = (𝑐𝑐2 − 𝑐𝑐1)/𝐷𝐷. In the 
normal incidence case, we note the following regional solutions:  

𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) =  𝑒𝑒𝑖𝑖𝑖𝑖(𝑧𝑧/𝑐𝑐1−𝑡𝑡) +  𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖(−𝑧𝑧/𝑐𝑐1−𝑡𝑡)  

𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) =  𝐴𝐴 �1 +
𝑚𝑚
𝑐𝑐1
𝑧𝑧�

𝑡𝑡1
𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡 + 𝐵𝐵 �1 +

𝑚𝑚
𝑐𝑐1
𝑧𝑧�

𝑡𝑡2
𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡                               (2) 

𝑢𝑢𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) =  𝑇𝑇𝑒𝑒𝑖𝑖𝑖𝑖(𝑧𝑧/𝑐𝑐2−𝑡𝑡) 
where 𝑅𝑅 is the reflection coefficient, 𝑇𝑇 is the transmission coefficient, 𝑛𝑛1 = (1 − 𝛼𝛼)/2 +
�(1 − 𝛼𝛼)2/4−  𝜔𝜔2/𝑚𝑚2, and 𝑛𝑛2 = (1 − 𝛼𝛼)/2−�(1 − 𝛼𝛼)2/4 −  𝜔𝜔2/𝑚𝑚2. We apply the continuity conditions 
described in the previous section to get a system of equations. Solving this system of equations in 
Matlab, we get the following exact solution for the reflection coefficient:   

𝑅𝑅(𝜔𝜔) =
𝑖𝑖𝑚𝑚𝜔𝜔(𝑟𝑟𝑡𝑡1 − 𝑟𝑟𝑡𝑡2)(1− 𝛼𝛼)

2𝜔𝜔2(𝑟𝑟𝑡𝑡1 − 𝑟𝑟𝑡𝑡2) + 𝑖𝑖𝑚𝑚𝜔𝜔(𝑟𝑟𝑡𝑡1 + 𝑟𝑟𝑡𝑡2)(𝑛𝑛1 − 𝑛𝑛2)                                          (3) 

where 𝑟𝑟 = 𝑐𝑐2/𝑐𝑐1. Note that the reflection coefficient is frequency dependent whereas when a sharp 
discontinuity is present the reflection coefficient is not dependent on frequency (Lamoureux et al., 2012). 
The non-normal incidence case below is will also depend on frequency.  
 
Recall for the non-normal incidence case that the solution to (1) will vary in both the x- and z-directions. 
Hence, we will focus on the case when only the density varies for (1). Specifically, the case when 𝛼𝛼 = 0. 

Figure 1: A velocity field which has a ramp moving from a constant velocity of 1000 m/s to 2000 m/s over 10 m. 
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To model Fig. 2, we use the following regional solutions:   
𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) =  𝑒𝑒𝑖𝑖(𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑧𝑧𝑧𝑧−𝑖𝑖𝑡𝑡) +  𝑅𝑅𝑒𝑒𝑖𝑖(𝑘𝑘𝑥𝑥𝑥𝑥−𝑘𝑘𝑧𝑧𝑧𝑧−𝑖𝑖𝑡𝑡)  
𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) =  𝑒𝑒𝑖𝑖(𝑘𝑘𝑥𝑥𝑥𝑥−𝑖𝑖𝑡𝑡)(𝐴𝐴𝑍𝑍1(𝑧𝑧) + 𝐵𝐵𝑍𝑍2(𝑧𝑧))                                                     (4) 
𝑢𝑢𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) =  𝑇𝑇𝑒𝑒𝑖𝑖�𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑧𝑧′𝑧𝑧−𝑖𝑖𝑡𝑡� 

where 𝑍𝑍1 = 𝑀𝑀0,𝛽𝛽(2𝑐𝑐(𝑥𝑥, 𝑧𝑧)𝑘𝑘𝑥𝑥/𝑚𝑚) and 𝑍𝑍2 =  𝑊𝑊0,𝛽𝛽(2𝑐𝑐(𝑥𝑥, 𝑧𝑧)𝑘𝑘𝑥𝑥/𝑚𝑚) for Whittaker functions 𝑀𝑀 and 𝑊𝑊. We also 
require that the parameters 𝑘𝑘𝑥𝑥 ,  𝑘𝑘𝑧𝑧, and 𝑘𝑘𝑧𝑧′  satisfy the dispersion relation: 

                                                                                        𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑧𝑧2 =
𝜔𝜔2

𝑐𝑐12
                                                                                  (5) 

and  

                                                                                        𝑘𝑘𝑥𝑥2 + (𝑘𝑘𝑧𝑧′)2 =
𝜔𝜔2

𝑐𝑐22
                                                                                  (6) 

where 𝑐𝑐1 is the velocity in the upper region. Applying the continuity conditions from the previous case, we 
get a system of equations which we solve to find the reflection coefficient:  

                   𝑅𝑅(𝜔𝜔) = −
1
𝑁𝑁

(𝑍𝑍1′(0)𝑍𝑍2′ (𝐷𝐷)− 𝑍𝑍2′ (0)𝑍𝑍1′(𝐷𝐷)− 𝑖𝑖𝑘𝑘𝑧𝑧�𝑍𝑍1(0)𝑍𝑍2′ (𝐷𝐷) − 𝑍𝑍2(0)𝑍𝑍1′(𝐷𝐷)�                      

− 𝑖𝑖𝑘𝑘𝑧𝑧′�𝑍𝑍1′(0)𝑍𝑍2(𝐷𝐷)− 𝑍𝑍2′ (0)𝑍𝑍1(𝐷𝐷)� − 𝑘𝑘𝑧𝑧𝑘𝑘𝑧𝑧′ (𝑍𝑍1(0)𝑍𝑍2(𝐷𝐷)− 𝑍𝑍2(0)𝑍𝑍1(𝐷𝐷)))                              (7) 
where 

                   𝑁𝑁 = 𝑍𝑍1′(0)𝑍𝑍2′ (𝐷𝐷) − 𝑍𝑍2′ (0)𝑍𝑍1′(𝐷𝐷) + 𝑖𝑖𝑘𝑘𝑧𝑧�𝑍𝑍1(0)𝑍𝑍2′ (𝐷𝐷)− 𝑍𝑍2(0)𝑍𝑍1′(𝐷𝐷)�                      
− 𝑖𝑖𝑘𝑘𝑧𝑧′�𝑍𝑍1′(0)𝑍𝑍2(𝐷𝐷)− 𝑍𝑍2′ (0)𝑍𝑍1(𝐷𝐷)�+ 𝑘𝑘𝑧𝑧𝑘𝑘𝑧𝑧′ (𝑍𝑍1(0)𝑍𝑍2(𝐷𝐷)− 𝑍𝑍2(0)𝑍𝑍1(𝐷𝐷)))                              (8) 

In this case, the reflection coefficient depends on frequency also. We can use a range of 𝜔𝜔 to determine 
the other parameters and plot the reflection coefficients for different incidence angles. In Figure 4, we 
compare the results of six different values of the incident angle 𝜃𝜃 for the reflection coefficient. In 
particular, we consider 𝜃𝜃 = 5∘, 10∘, 15∘, 20∘, 25∘, and 30∘.  

Conclusions 
We found the exact solutions for reflection coefficients for the case when a 2D velocity ramp is present. 
We considered a plane wave hitting the ramp at normal incidence for some parameter 𝛼𝛼. We also looked 

Figure 2: The plane wave hits the transition zone at an angle in this case. A portion of the wave travels through the 
transition zone from 𝑧𝑧 = 0 to 𝑧𝑧 = 50 and is transmitted on the other side while the rest is reflected.  
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at the non-normal incidence case when density varied for the 2D velocity ramp and found an equation for 
the reflection coefficient with respect to 𝑘𝑘𝑥𝑥 ,𝑘𝑘𝑧𝑧,𝜔𝜔, and 𝑘𝑘𝑧𝑧′ . Finally, we compared reflection coefficients for 
different incidence angles 𝜃𝜃. 
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