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SUMMARY 

P- and S-wave inverse quality factors, 1/QP and 1/QS, 

quantify seismic wave attenuation, which are related to 

several key reservoir parameters (porosity, saturation, 

viscosity, etc.). Estimating 1/QP and 1/QS from observed 

seismic data provides additional and useful information for 

a gas-bearing reservoir prediction. We first derive an 

approximate reflection coefficient and attenuative elastic 

impedance involving effects of attenuation, and then we 

establish an approach to invert for elastic properties (P- and 

S-wave impedances, and density) and attenuation (P- and 

S-wave inverse quality factors) from seismic data at 

different incidence angles and frequencies. The approach 

includes a model-based and damped least-squares inversion 

for attenuative elastic impedance, and a Bayesian Markov 

Chain Monte Carlo inversion for 1/QP and 1/QS. Synthetic 

data tests confirm that P- and S-wave impedances and 

inverse quality factors are reasonably estimated in the case 

of moderate data error or noise. Applying the established 

approach to a field data set is suggestive of the robustness 

of the approach, and that physically meaningful inverse 

quality factors can be derived from seismic data acquired 

over a gas-bearing reservoir. 

INTRODUCTION 

P- and S-wave velocities and inverse quality factors are 

related to fluid type and saturation. In gas-bearing 

reservoirs, higher gas saturation zones often show 

anomalously high values of attenuation (Chapman et al., 

2006). Many rock physics effective models have been 

developed to show how the fluid affects the attenuation of 

seismic wave propagation in porous media. Dvorkin and 

Nur (1993) developed a unified model (BISQ) with the 

squirt and the Biot mechanisms. Mavko and Jizba (1991) 

derived formulas for the prediction of high-frequency 

moduli of a completely saturated rock. Dvorkin et al. (1995) 

proposed a detailed process to calculate P- and S-wave 

velocities and inverse quality factors for all frequencies in a 

fully saturated rock, which is an extension of the Mavko 

and Jizba (1991) model. Dvorkin and Mavko (2006) 

developed an approach to calculate P- and S-wave inverse 

quality factors for the case of partial saturation, based on 

the standard linear solid model (SLS). In this paper, using 

the Dvorkin and Mavko (2006) approach, we will estimate 

P- and S-wave velocities and inverse quality factors at a 

given reference frequency from well-logging data (porosity, 

water saturation, minerals and volume, etc.). These 

quantities are used to generate synthetic data to test the 

inversion of amplitudes for 1/QP and 1/QS. 

 

Amplitude variation with frequency (AVF) analysis and 

inversion can be used to estimate P- and S-wave velocities 

and inverse quality factors in an attenuative target. Aki and 

Richards (2002) expressed the frequency-dependent wave 

velocity in terms of a constant velocity at a reference 

frequency and inverse quality factor. Innanen (2011) 

derived absorptive reflection coefficients in terms of 

perturbations measuring relative changes in density, and P- 

and S-wave velocities and quality factors across the 

interface separating an elastic and viscoelastic media. 

Under the assumption of a constant quality factor, Moradi 

and Innanen (2015, 2016) described scattering of 

homogeneous and inhomogeneous seismic waves in low-

loss viscoelastic media, and presented linearized 

expressions of PP- and PS-wave reflection coefficients. 

However, little effort in pre-stack time-domain frequency-

dependent data inversion, for elastic properties (velocity or 

impedance, density, etc.) and inverse quality factors, has 

been reported. Under the assumptions of low attenuation 

and small changes in P- and S-wave inverse quality factors, 

we make a simplification of the derived PP-wave reflection 

coefficient and with it present an attenuative elastic 

impedance (QEI). The approach is a two-step inversion, 

which includes the logarithmic QEI inversion from seismic 

data at different incidence angles and frequencies, and 

elastic properties and inverse quality factor estimate from 

the inverted logarithmic QEI. Tests on synthetic data 

indicate that the proposed approach can make a reasonable 

estimate of P- and S-wave impedances and inverse quality 

factors in the case of seismic data containing a moderate 

signal-to-noise ratio (SNR) Gaussian random noise. 

Applying the approach to a real data set we confirm that it 

generates meaningful results relevant to gas-bearing 

reservoir prediction. 

THEORY AND METHOD 

Estimating inverse quality factors from well-logging data 

In the Dvorkin and Mavko (2006), the relationship between 

1/QP and the compressional modulus is given by 

        2

P 0 01 = 1c cQ M M M M     
  
  , (1) 

where M   and 0M  are the high- and low-frequency limits 

of the compressional modulus, and c  is the critical 

angular frequency at which the P-wave inverse quality 

factor reaches its maximum before decreasing. 

The 1/QP term is re-expressed as 

       
2

P P1 =2 1c c cQ Q      
  . (2) 

In order to calculate the maximum of 1/QP, we calculate 

M   and 0M  using well-logging interpretation results 
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(minerals and their volumes, porosity, water saturation). 

After obtaining 1/QP, we use an approximate relationship 

between P- and S-wave inverse quality factors (Mavko et al. 

2009) to calculate 1/QS directly. A well log model 

including P- and S-wave impedances (IP and IS), density (ρ), 

clay volume (VSH), water saturation (SW), and porosity (ϕ), 

is displayed in Figure 1. 

 

 

Figure 1. A well log model. 

Using Dvorkin and Mavko (2006), we estimate the 

maximum of 1/QP and calculate 1/QS; the results are 

illustrated  in Figure 2. 

 

Figure 2. Estimated inverse quality factors. 

From Figure 2, we observe high values of 1/QP and 1/QS 

which indicate high attenuation, in the vicinity of the gas 

reservoir (around 1900 ms). 

Complex reflection coefficients and attenuative EI 

Aki and Richards (2002) present an expression for the 

complex wave velocity complexV  in terms of frequency-

dependent velocity  V  and  1 Q  . Given a reference 

frequency ( c ), the P-wave velocity is 

      P P P= 1V Q Q i         , (3) 

where      2 log c       , and  
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The terms   and P1 Q  are P-wave velocity and inverse 

quality factor at the reference frequency c . Similarly, the 

frequency-dependent S-wave velocity is  

      S S S= 1V Q Q i         , (4) 

where   and S1 Q  are S-wave velocity and inverse quality 

factor at the given reference frequency c . Combining 

equations (3) and (4), we express the frequency-dependent 

complex stiffness parameters,  33C   and  55C   as 
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where 2

33C  , 2

55C  , and   is density. Following 

Shaw and Sen (2006), we write the complex P-P reflection 

coefficient using stiffness parameters as 
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,(6) 

where  P P P2R I I  ,  S S S2R I I  , and  D 2R     

are relative changes in P- and S-wave impedances, and 

density across the interface, PI  , SI  , and 
2 2g   . We next compare the real and imaginary parts 

of the derived reflection coefficient calculated by using the 

elastic properties (Figure 1) and the estimated inverse 

quality factors (Figure 2) at different frequencies and 

incidence angles. These are shown in Figure 3. We select 

104 Hz as the reference frequency. 
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Figure 3. Comparisons between real and imaginary parts. (a) 

15 Hz, and (b) 45 Hz. 

Neglecting the imaginary part, we derive an attenuative 

elastic impedance (QEI) using the derived reflection 

coefficient. The logarithmic QEI (LQEI) is given by 
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Inversion for P- and S-wave inverse quality factors 

The estimation of P- and S-wave inverse quality factors 

from observed seismic data is implemented in two steps: 

the LQEI  is inverted from near, middle, and far 

offset/angle seismic data stacked over the incidence angle, 

and then 1/QP and 1/QS are estimated from the inverted 
LQEI . The relationship between the observed seismic data 

and the LQEI  is  

 B AX , (8) 

where B  is the input data vector, X  is the LQEI  vector, 

and A  is a linear operator incorporating the wavelet. A 

damped least-squares inversion algorithm is employed to 

invert for the LQEI  

    
1

T T

mod mod+


  X X A A I A B AX , (9) 

where Xmod is the initial model, I is the unit diagonal matrix, 

and   is the damping factor. After the LQEI  estimate, we 

apply a Bayesian MCMC inversion method to the 

estimation of P- and S-wave impedances, density and 

inverse quality factors. In a Bayesian framework, the 

posterior probability distribution function,  P m d , of the 

model vector m  given the data vector d  is expressed as 

      P P Pm d d m m , (10) 

where  P d m  is the likelihood function, and  P m  is a 

prior probability. The nonlinear forward model is given by 

  =d G m , (11) 

where d  is the estimated LQEI  vector,  G  is the 

forward modeling operator, and m  is the unknown 

parameter vector. Given Gaussian noise, we have 

         22 221 2 exp 2
N

e eP      d m d G m , (12) 

where  
2

e  is the noise variance. The Cauchy 

distribution,is used as a prior (Alemie and Sacchi, 2011): 

       2 21 exp ln 1+
N

P      
 m m m

m m , (13) 

where, m  is the mean value of the unknown parameter 

vector, and 2m  is the variance value of the model 

parameter vector. A Markov chain Monte Carlo (MCMC) 

method is employed to generate samples from a probability 

distribution. We employ the Metropolis-Hastings algorithm 

to control the transition from the current Markov chain to 

the next chain, and adopt chains satisfying the acceptance 

probability. We produce one random variate, and compare 

it with the acceptance probability. If the random variate is 

less than the acceptance probability, we accept the 

candidate chain, otherwise, we reject it and generate a new 

candidate. The mean values of all accepted candidate 

chains are used as parameter estimates. 

EXAMPLES 

Synthetic examples 

P- and S-wave impedances, density, and inverse quality 

factors (shown in Figures 1 and 2), and a Ricker source 

wavelet, are used to generate synthetic seismic gathers. We 

use the real part of (6) to calculate values of P-P the 

reflection coefficient. After the LQEI inversion, we 

estimate P- and S-wave impedances, density, and inverse 

quality factors with the proposed Bayesian MCMC 

algorithm as outlined above. Figure 4 shows comparisons 

between true values (blue) and inversion results (red) of the 

parameters. P- and S-wave impedances and 1/QP, 1/QS are 

accurately estimated given moderate SNR.  The accuracy 

of the density inversion can likely be improved by 

involving more large-offset/angle data in the inversion. 
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Figure 4. Comparisons between inversion results (red) and 

true values (blue). Green color represents the initial model. 

(a) SNR is 5, and (b) SNR is 2. 

Field data example 

We analyze a field data set acquired above a gas reservoir 

in China. We first use seismic data stacked over the 

incidence angle at different frequencies to invert for the 

LQEI, and then we extract P- and S-wave impedances, 

density, and inverse quality factors using the Bayesian 

MCMC method. Figure 5 summarizes the inversion results 

for estimation of P- and S-wave impedances, density, and 

inverse quality factors. The curve in each figure is the well-

logging P-wave velocity.  

 

 

 

 

 

Figure 5. Inversion results of IP, IS, ρ, 1/QP and 1/QS. The 

curve is P-wave velocity provided by the well log. 

(a) IP, (b) IS, (c) ρ, (d) 1/QP and (e) 1/QS. 

We observe that at the location of the gas reservoir (around 

1900 ms) P- and S-wave impedances and density exhibit 

low values, and 1/QP, 1/QS show high values, which agrees 

well with the variation of the well-logging P-wave velocity. 

By incorporating both impedances and the inverse quality 

factors, we believe the robustness of detection of a gas-

bearing reservoir has been increased. 

CONCLUSIONS 

We have established an approach to simultaneously invert 

for elastic (P- and S-wave impedances, and density) and 

attenuation (P- and S-wave inverse quality factors) 

properties from observed seismic data, based on the 

complex reflection coefficient and an attenuative extension 

of elastic impedance (QEI). The approach involves a 

model-based damped least-squares inversion for LQEI from 

seismic data stacked over the incidence angles at different 

frequencies, and a Bayesian Markov Chain Monte Carlo 

(MCMC) inversion for 1/QP and 1/QS from the inverted 

LQEI. Synthetic tests verify that unknown parameters can 

be inverted to produce geologically reasonable values in the 

case of moderate noise. In application to a field data set, we 

conclude that by incorporating both impedances and the 

inverse quality factors in a modified elastic impedance 

formulation leads to meaningful and efficient gas reservoir 

detection and characterization. 
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