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SUMMARY

Simultaneous use of data within relatively broad frequency bands is es-
sential to discriminating between velocity and Q errors in the construc-
tion of an-acoustic full waveform inversion (QFWI) updates. Individ-
ual frequencies or narrow bands in isolation cannot provide sufficient
information to resolve cross-talk issues in a surface seismic acquisition
geometry. Truncated Newton (TN) optimization methods offer the po-
tential for reducing computational cost while incorporating approxi-
mate versions of the Newton update to reduce these cross-talk issues,
with the trade-off being mediated by the chosen number of inner TN
iterations. In fact, in TN-QFWI we are able to choose between two
qualitatively distinct “modes” of an-acoustic inversion: one in which
the estimation of a velocity model uncorrupted by the influence of Q is
the desired outcome, and another in which both a velocity model and
a Q model are the desired outcomes. Both can in principle be accom-
plished in the context of TN-QFWI, with the former at significantly
reduced computational expense.

INTRODUCTION

Full waveform inversion (FWI) is a technique which attempts to re-
cover the true subsurface parameters by iteratively minimizing the
difference between measured data and modeled data generated from
the current estimated subsurface parameters (Lailly, 1983; Tarantola,
1984; Virieux and Operto, 2009). While multiparameter versions of
FWI have been formulated and studied, the majority of research on
FWI is focused on a single parameter problem, specifically that in
which acoustic wave propagation is assumed and density is treated
as constant. In this problem, only P-wave velocity varies in the model.

However, in the effort to make FWI effective in the determination of
larger numbers of smaller scale (e.g., reservoir) properties, the multi-
parameter FWI problem must be brought to bear. In multiparameter
FWI (e.g., Operto et al., 2013; Plessix et al., 2013; Pan et al., 2016),
allowance is made in the gradient/Hessian quantities for simultaneous
and independent variations of several parameters, either to support ve-
locity model building, or to push towards elastic characterization of
the subsurface (Tarantola, 1986; Choi et al., 2008).

Attenuation and dispersion play important roles in both of these ap-
plications of multiparameter FWI. It can be a powerful nuisance to
acoustic and elastic FWI, strongly influencing the amplitude and phase
of the waveforms we would like to interrogate for acoustic/elastic in-
formation, but it can also be a rich source of information by which
fluids and viscosities can be determined or discriminated. So, we can
also distinguish between whether we wish to specifically determine Q
in FWI, or merely “protect” the recovery of other parameters from its
influence. Either motivation requires that the physics of attenuation be
included in an FWI scheme. An-acoustic FWI (QFWI for short), in
which attenuation and dispersion parameters are determined simulta-
neously alongside their elastic counterparts, has been carefully investi-
gated (e.g., Hak and Mulder, 2011; Hicks and Pratt, 2001; Malinowski
et al., 2011; Kamei and Pratt, 2013; Métivier et al., 2015). In much
of this existing research, however, incorporating attenuation is treated
as a small addition to the classical acoustic/elastic FWI problem, with
relatively little focus on how the nature of the problem changes. Pa-
rameter cross-talk, in which one parameter is mistakenly updated to
account for data residuals caused by another, affects an-acoustic FWI
significantly and in a unique manner requiring special study.

Simultaneous variations in acoustic and/or elastic properties can be
separately estimated in FWI primarily because of differences in the
angle-dependence of scattering from one parameter to another. With

P-wave velocity and Q it is, in contrast, the differences in the frequency-
dependence of scattering amplitudes which permits them to be distin-
guished (Innanen and Weglein, 2007; Hak and Mulder, 2011). This
fact ties together, in an unusually close manner, issues of multiscale
FWI, in which iterations or groups of iterations involve different fre-
quency bands, parameter cross-talk, and the degree of approximation
with which off-diagonal elements of the inverse Hessian are incorpo-
rated through TN iterations. In this paper we analyze this relationship
in the context of synthetic an-acoustic frequency domain FWI. Be-
cause the exact manner in which dispersion is modelled determines
the character of the cross-talk, the attenuation model type, which must
be selected prior to formulating a detailed FWI algorithm, plays a key
role. This issue is discussed in a companion paper (Keating and Inna-
nen, 2017).

THEORY

Cross-talk

The FWI problem considered here has an objective function given by

φ(m) =
1
2
||dobs−dmod ||22, (1)

where φ , a function of the subsurface model m, measures the discrep-
ancy between the measured data dobs and the modelled data dmod . To
recover the true properties of the subsurface, this objective is mini-
mized in FWI through gradient-based, or Newton type updates.

Cross-talk is the phenomenon where data residuals introduced by an
error in one model parameter are attributed to errors in the estimate of
another parameter. For example, cross-talk is present if an estimate of
density is modified due to data residuals introduced by errors in a ve-
locity estimate. Cross-talk is a major concern in FWI, as it can severely
harm the accuracy of the recovered model and the convergence of the
scheme (e.g., Plessix et al., 2013; Innanen, 2014; Pan et al., 2016).
Gradient updates are particularly vulnerable to cross-talk. This is due
to the fact that the gradient considers only the derivative of the objec-
tive function with respect to each variable parameterizing the model.
If changes in several different variables can reduce the same part of
the data residual, all will be changed in a gradient update.

Newton optimization employs both the first order (gradient) and sec-
ond order (Hessian) derivatives of the objective function. In Newton
optimization, the update p is given by

p =−H−1g , (2)

where g is the gradient of the objective function, and H is the Hessian
matrix. The Hessian provides information about how the derivative
with respect to one variable will change as another variable changes.
This helps to prevent several variables from being used in reducing the
data residual introduced by an error in one, mitigating cross-talk. Un-
fortunately, in realistic FWI applications, Newton optimization tends
not to be a viable approach, because of the excessive cost for the stor-
age and inversion of the Hessian.

Optimization

Two approaches which attempt to approximate exact Newton opti-
mization but at reduced cost are quasi-Newton methods and truncated
Newton methods. Quasi-Newton methods obtain an exact solution
to an equation approximating equation 2, whereas truncated Newton
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(TN) methods are those which obtain an approximate solution to equa-
tion 2. Both attempt to provide an efficient alternative to exact Newton
optimization while still retaining important information about the Hes-
sian, which helps to mitigate cross-talk. In this report we focus on the
TN method.

TN optimization is similar to exact Newton optimization, but rather
than directly solving 2, an approximate solution is obtained by itera-
tively minimizing (Nocedal and Wright, 2006)

θ(p) =
1
2

pT Hp+gT p. (3)

At a minimum of this objective function, the gradient of θ is zero, so

Hp+g = 0, (4)

satisfying equation 2. In this research, the truncated Gauss-Newton
method is used, where H is replaced with HGN , the residual indepen-
dent part of the Hessian. Following Metivier et al. (2013), FWI updates
are iteratively constructed in what will be called the outer loop, and the
minimization of equation 3, which occurs once for each FWI update,
but is itself iterative, involves what will be called the inner loop. Pro-
vided a suitable optimization approach is employed in the inner loop,
this method does not require the storage or inversion of the Hessian
matrix HGN , only the product of the Hessian with an arbitrary p. This
Hessian-vector product can be efficiently calculated using the adjoint
state method, as described in Metivier et al. (2013).

We implement the inner loop of the TN FWI algorithm with a BFGS
inner solver, wherein p is determined by iteratively solving

pk = pk−1 +αk∆p, where ∆p =−Q∇pk−1, (5)

Q is the BFGS approximation of the inverse Hessian of θ (which is
the same as the inverse Hessian of φ ), and

αk =−(∂θ/∂p)T ∆p
/(

∆pT Q∆p
)
. (6)

The computational cost of the truncated Newton method is determined
largely by the number of inner iterations used in minimizing (3) in
each FWI iteration. This cost is controlled by specifying stopping
conditions. The stopping conditions used here are satisfied when a
maximum number of iterations are reached, or the condition

||HGNp+g|| ≤ ||ηg|| (7)

holds, where η is a chosen forcing term. The smaller this forcing term,
the greater the cost and lower the cross-talk; the larger the forcing term,
the less the computational cost and the greater the cross talk.

Wave equations

In order to study in isolation new aspects of cross talk (etc.) in multi-
parameter FWI which are introduced by attenuation and dispersion,
we consider waves whose propagation is governed by

[
ω2s(r,ω)+∇2]u(r,ω) = f (r,ω), (8)

where u is the pressure field, f is a source term, and the model pa-
rameter s includes a dispersive velocity and an attenuation. No single
attenuative-dispersive model is likely always to be entirely correct, so
many exist, meaning that several anacoustic models could be consid-
ered. This variation, which has its own set of issues for FWI (Keating
and Innanen, 2017), is reflected in different specific forms of s. Here,
the constant Q Kolsky-Futterman attenuation model is considered:

s(r,ω) =
1

c2(r)

{
1+

1
Q(r)

[
i− 2

π
log

(
ω
ω0

)]}
, (9)

where c is the acoustic wave velocity at the reference frequency ω0,
and Q is the quality factor. For a chosen ω0, the an-acoustic FWI prob-
lem is to determine the unknown spatial distributions of two parame-
ters, c and Q. Inspection of equation 9 identifies a specific challenge
that the QFWI problem faces. The size of the frequency dependent
term in s, which models dispersion, is determined by Q. In effect, both
c and Q co-determine the wave velocity at a given frequency. This
opens the possibility of considerable cross-talk, and is suggestive that
variations from one frequency to another will be instrumental in miti-
gating it.

Predicting cross-talk with an-acoustic scattering potentials

The radiation patterns, or scattering potentials, of point perturbations
in active FWI parameters, plotted as functions of experimental vari-
ables (e.g., angle between incoming and outgoing rays, frequency,
etc.), are often used to determine the degree of expected parameter
cross talk in multi-parameter FWI. Parameters which generate poten-
tials with proportional amplitude variations over a given range of these
experimental variables are easily confused with one another. The scat-
tering potential V for position x and frequency ω associated with our
chosen an-acoustic wave equation is

V (x,ω)≈− ω2

c0(x)2 [VQ(x,ω)+Vc(x,ω)] , (10)

where

VQ(x,ω) =
F(ω)

Q0(x)
∆Q(x), Vc(x,ω) =

(
1+

F(ω)

Q0(x)

)
∆c(x) (11)

and where F(ω) = i− (2/π) log(ω/ω0); the ∆· quantities,

∆Q(x) = 1− Q0(x)
Q(x)

, ∆c(x) = 1− c0(x)2

c(x)2 , (12)

represent localized jumps in their corresponding model parameters Q
and c.

Notably, the Q and c components do not vary independently of one
another with scattering angle. This means that angle-based consider-
ations in the discrimination of different model parameters, which are
crucial in elastic and anisotropic FWI, do not apply here. The com-
ponents do, however, undergo relative variation as frequency changes;
our conclusion is that only through simultaneous inversion of a range
of frequencies can a QFWI update distinguish between the influence
of c and that of Q. This is illustrated in Figure 1. By inspection of
this plot, we can furthermore predict that if only a small range of fre-
quencies are considered, over which the two scattering potentials vary
roughly in proportion, c and Q will be extremely difficult to distin-
guish. Over broader ranges of frequencies, however, significant differ-
ences between the two scattering potentials become prevalent, which
should enable a QFWI iteration to create meaningful updates in both.
This introduces a new feature to multi-scale FWI workflows, in which
demands already exist on the frequencies considered.

Gradient for QFWI

Gradients for c and Q, consistent with equations (1), (8), and (9) can
be written

gc(r) = ∑
rg ,rs ,ω

ω2
[

1+β (ω)sq0 (r)
]

G0(rg,r)G0(r,rs) δd∗ (13)

and

gq(r) = ∑
rg ,rs ,ω

ω2
[

β (ω)sc0 (r)
]

G0(rg, r)G0(r, rs)δd∗, (14)

where δd = δd(rg,rs) are the residulas, sc0 = c−2
0 , sq0 = Q−1

0 , are
the current model iterates, G0(r, r′) is the Green’s function describing
propagation from r′ to r in the current medium iterate, and

β = i− 2
π

log(ω/ω0) . (15)
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Figure 1: Amplitude of the scattering potential as a function of fre-
quency for velocity perturbation (blue) and Q perturbation (red). Am-
plitudes have been normalized to 1 at 1Hz. Background Q0 = 20, and
the reference frequency was 15Hz for this example.

Figure 2: Benchmark model, velocity (left) and Q (right). The velocity
values correspond with reference frequency ω0/2π = 30Hz.

NUMERICAL EXAMPLES

We use the QFWI framework in the previous section to examine the
effects of (1) frequency groups used in individual iterations, and (2)
optimization method on parameter cross-talk. 2D frequency-domain
finite difference modelling is used for simulations; models used are
defined on a 2D 50×50 grid with 10m grid cells. 24 sources at 30m
depth are spaced 20m apart from 10-470m; 48 receivers at 20m depth
are spaced 10m apart from 10-480m. Frequencies from 1Hz to 25Hz
are assumed to be available, and the source function is considered to
have a uniform amplitude spectrum over this range. First order En-
gquist boundary conditions are implemented at every boundary. The
reference frequency considered was 30 Hz. Figure 2 illustrates the
benchmark model used for all of the examples; the initial model con-
sists of homogeneous c0 and Q0 values equal to the background val-
ues in Figure 2. Velocity perturbations placed above and below a Q
anomaly were chosen to highlight cross-talk issues as they arise due to
optimization strategies and frequency bandwidth.

Frequencies in multiscale QFWI

In the examples shown in this section, the effect of frequency informa-
tion on cross-talk in QFWI is investigated. Full Gauss-Newton opti-
mization is employed to ensure that cross-talk is not being introduced
by numerical optimization.

Figure 3 illustrates the results of QFWI when one frequency is inverted
at each iteration. 6 iterations were performed at each frequency, begin-
ning at the lowest frequency, 1Hz, then increasing in 1Hz increments
up to 25Hz. The problems in Figure 3 highlight important features of
QFWI. Cross-talk impairs the Q estimate far more strongly than the c
estimate, with the Q anomaly not meaningfully recovered. The c esti-
mate is also strongly impacted by cross-talk, with the lower anomaly
(to illuminate which raypaths have had to traverse the Q-anomaly) be-
ing much more poorly reconstructed. Because this cross-talk occurs
despite the use of full Gauss-Newton optimization, and comprehen-
sive simulated acquisition, it is reliably traceable to the use of a single
frequency, which is similar to attempting to solve for several elastic
parameters with a single angle of data.

Figure 3: Gauss-Newton QFWI, inverting only one frequency at each
iteration.

Figure 4: Gauss-Newton QFWI, inverting a 1Hz band of frequencies
at each iteration. Compare with Figure 3.

Figure 5: Gauss-Newton QFWI, inverting a broad band of frequencies
at each iteration. Compare with Figures 3 and 4.

Figure 4 illustrates the results of QFWI in which a narrow band of
frequencies (6 evenly-spaced frequencies in a 1Hz range) was inverted
at each iteration. One iteration was carried out per band, beginning
with a band centered at 1.5Hz, and increasing the center frequency
by 1Hz at each iteration, up to 24.5Hz. The improved recovery of
the deeper velocity anomaly and the Q anomaly are notable (compare
with Figure 3). This is further evidence supporting the prediction from
scattering potential analysis that groups of frequencies at each iteration
offer the only tangible means of discriminating between velocity and
Q, and mitigating cross-talk.

Figure 5 illustrates the results of QFWI in which a broad band of fre-
quencies (6 evenly-spaced frequencies over a growing range) was in-
verted at each iteration. The 6 frequencies were distributed from 1Hz
to a maximum frequency which began at 2Hz, and increased by 1Hz
per iteration to a maximum of 25Hz. This approach produces the best
recovery of the three strategies. All else having been held fixed in
these experiments, we conclude that iterations involving a large, var-
ied range of frequencies are optimal for suppressing cross-talk. This is
in keeping with the general principle that, to separate any two parame-
ters, data must span experimental variables across which the two have
different characteristic scattering signatures.

Optimization strategy

Based on our conclusions above, we will from this point on use the
broad frequency-band multiscale approach (i.e., the scheme by which
Figure 5 was generated). An outstanding weakness in those results,
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Figure 6: Result of steepest descent FWI, inverting a large band of fre-
quencies at each iteration. Severe cross-talk is evident, despite using
the same frequencies for inversion as in figure 5.

however promising, is that to achieve them we have used an exact
Gauss-Newton optimization strategy, which, while viable for small
models, is computationally very expensive. To improve efficiency, a
steepest descent scheme can be employed, in which the Hessian is ap-
proximated with the unit operator. Figure 6 illustrates the results of
doing so. For this example, 23 iterations were carried out at each fre-
quency band. Cross-talk is dominant in the result, despite the very
large number of iterations used. So, although a broad frequency band
brings into the inversion sufficient information to suppress cross-talk,
only with the weights provided by the Hessian is that information cor-
rectly used. In this example, the gradient was evaluated 575 times,
which, in addition to the 2356 objective function evaluations required
in the 575 necessary line searches, brought the total cost to 3506 wave-
field simulations.

In common with other multiparameter FWI problems, something ly-
ing between the full Gauss-Newton and steepest descent schemes is
needed to efficiently suppress cross-talk. The truncated Newton (TN)
optimization approach plays this role. Figure 7 illustrates the result of
applying truncated Gauss-Newton QFWI (hereafter TN-QFWI) with a
forcing term of 10−3. One iteration was carried out at each frequency
band. This result shows little evidence of cross-talk. The small forcing
term makes this a close approximation to exact Gauss-Newton opti-
mization. This forcing term magnitude also meant that a total of 1789
Hessian-vector products were evaluated, each with the same compu-
tational cost as a gradient calculation. In addition to the 25 gradient
calculations, and the 100 objective function evaluations required in the
25 line searches performed, this brought the total cost to 3728 wave-
field propagation problems solved.

We next consider to what degree cross-talk suppression like this can
be obtained with larger forcing terms, i.e., greater efficiency. In Figure
8 the result with a forcing term of 10−2, with all else unchanged, is
illustrated. The recovered model contains significant errors, mostly in
the recovered Q. This approach required a total of 803 Hessian-vector
product calculations, in addition to 25 gradient calculations and 100
objective function evaluations required in 25 line searches, for a total
cost of 1756 wavefield propagation problems. This is suggestive that
two modes of TN-QFWI be considered: a relatively low-cost mode
involving a high forcing term, producing a velocity model that is very
successfully “protected” from the influence of Q, but a Q model which
is itself of limited use. A higher-cost mode involving a low forcing
term, produces high fidelity reconstructions of both parameters.

An interesting case to consider is that in which a less accurate TN ap-
proximation is used, but with a greater number of outer iterations per-
formed. Figure 9 illustrates the results of this experiment: η = 10−2

is used, with 2 iterations per frequency band. Very little cross-talk
is observed in the recovered model for this example. The computa-
tional cost is high, however, a total of 2475 Hessian-vector products
are evaluated, 683 on first iterations of a frequency band, and 1792 on
the second. Combined with 50 gradient calculations and 219 objec-
tive function evaluations required in 50 line searches, a total of 5269
wavefield propagation problems were solved. There appears therefore

to be a close relationship between outer iterations performed, and inner
iterations required; a simple compromise between these is not easily
achieved.

Figure 7: TN-QFWI, inverting a large band of frequencies at each
iteration with a forcing term of 10−3.

Figure 8: TN-QFWI, inverting a large band of frequencies at each
iteration with a forcing term of 10−2.

Figure 9: TN-QFWI, inverting a large band of frequencies at each
iteration with a forcing term of 10−2, 2 iterations per frequency band.

CONCLUSIONS

Cross-talk is a serious concern in QFWI, and has a particularly strong
impact on the recovered Q model. Frequency dependent effects play a
major role in eliminating this cross-talk. Single frequency updates pro-
duce results dominated by cross-talk, even when exact Gauss-Newton
optimization is used. Inverting even a small band of frequencies per it-
eration offers a notable improvement, and the best results were achieved
inverting the largest range of frequencies possible. Adequate consid-
eration of Hessian information, for instance through truncated Newton
methods, is crucial to using these frequencies to suppress cross-talk.
A greater number of FWI iterations can compensate for a less precise
estimate of the Hessian, but the cost of approximating the Hessian is
not constant, and the cost of performing additional iterations at a cho-
sen level of accuracy may not be easy to predict. We observe that
TN-QFWI mode in “efficient” mode, with a high forcing term, may
provide efficient and robust velocity estimates, protected from attenu-
ation, at the cost of a well-resolved Q model estimate.
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