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Summary  
The interest in Distributed Acoustic Sensing (DAS) fibres, for improved Geophysical acquisition has seen 
substantial growth over the last half-decade. Utilizing DAS fibre for seismic acquisition has the potential to 
decrease acquisition costs, improve survey repeatability, and expand the applications of seismic 
acquisition. Straight DAS fibres have obtained a certain degree of success, however, their insensitivity to 
wavefields producing broadside strain has greatly limited their applications. Fibre geometry plays a crucial 
role in the ability of DAS systems to recover the wavefield, and winding the fibre in more complex shapes, 
has proven to better characterize the wavefield. Unfortunately, as the complexity of the fibre geometry 
grows, so does the complexity of the recorded signal, making interpretation a more challenging task. To 
develop a more thorough appraisal of DAS fibre shapes, we must be able to model the response of varying 
fibre geometries to an impinging wavefield. We begin with a review of the main tenants of the fibre 
geometry model, which make up the core of the CREWES fibre geometry and sensing model (FGSM). We 
then couple this with a velocity-stress finite-difference model, and show how it may be utilized to create 
synthetic fibre data.   

Introduction 

For decades, the standard geophone has been the instrument of choice for the measurement of seismic 
wavefields. Current economic pressures coupled with a change in the role of seismic acquisition has driven 
a need for innovative and cost-effective seismic acquisition technologies. Distrusted Acoustic Sensing 
(DAS) which utilizes standard telecommunication grade fibre-optics to sense seismic motion has 
significantly increased in popularity in recent years. The recent expansion of fibre-optics into the 
telecommunications industry has reduced the cost of optical fibres, making them an attractive option for 
seismic acquisition programs.  

Optical fibres contain microscopic impurities that act as sites for Rayleigh scattering within the fibre. As a 
laser pulse traverses the fibre, it interacts with these impurities, and a portion of the light is backscattered. 
This backscattered light arrives at what is known as the interrogator, where its intensity and pattern are 
analyzed. When a fibre is subjected to seismic strain it is stretched and squeezed along the tangent of the 
fibre. This stretching and squeezing changes the distance between scattering impurities, altering the optical 
path length of the laser pulse, which further alters the intensity of the backscattered light. The interrogator 
uses the change in light intensity over time to interpret a seismic signal, and produce shot records.  

Recent publications have exemplified the vast applications that DAS could be applied to. Daley et al. 
(2013), Mateeva et al. (2014), and Mestayer et al. (2012) examined the use of straight DAS fibres for 
vertical seismic profiles. Webster et al. (2016) employed straight DAS fibres in deviated wells to detect 
microseismic events during fracking. Martin et al. (2017) examined the use of DAS arrays for passive 
monitoring of teleseismic waves and anthropogenic noise. Research at the University of Calgary has 
examined the discrimination of elastic wave modes through the shape of DAS fibres (Innanen and Eaid, 
2017), and the characterization of microseismic source mechanisms (Innanen et al., 2017). It is also hoped 
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that properties of DAS acquisition could aid in issues encountered in FWI, namely frequency content and 
spatial sampling. For these research areas to be fully realized, and as fibre geometry increases in 
complexity, it is imperative to develop tools to model the response of DAS fibres to seismic wavefields. The 
CREWES fibre geometry and sensing model (FGSM) has been in development for the last year, it is 
concerned with the geometry of the fibre, and can handle input snapshots of a wavefield. We expand upon 
this by developing a velocity-stress finite-difference formulation that is appropriate for DAS data, and then 
couple it to the geometric model in the FGSM to produce synthetic fibre data.      

Geometrical model for a helically wound fibre 
We begin by imagining a DAS fibre wrapped in a helix, around a cable of arbitrary shape.  

 

Position vector, f, represents the position of any point on the fibre, which may be decomposed into the 
vector sum of the vectors c, and h. Where vector c is the position of the point on the central axis of the 
cable closest to point f, and vector h is vector lying in the plane perpendicular to the cable axis that adds 
in a helix as the cable winds. Typically the cable position is parameterized in the arc-length along the 
cable, s’, taking the form, c = [c1(s’),c2(s’),c3(s’)]T. Where cable arc-length is given by,  
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We may then a define new coordinate system defined by the cable axis tangent, 𝒕𝒕�(𝑠𝑠′), and the two 
vectors lying in the plane perpendicular to the tangent, the normal, 𝒏𝒏�(𝑠𝑠′),  and binormal, 𝒃𝒃�(𝑠𝑠′).  
 

𝒕𝒕�(𝑠𝑠′) = 𝑑𝑑𝒄𝒄
𝑑𝑑𝑠𝑠′

 , 𝒏𝒏(𝑠𝑠′) = 𝑑𝑑𝒕𝒕�𝑠𝑠′�
𝑑𝑑𝑠𝑠′

 , 𝒃𝒃�(𝑠𝑠′) = 𝒕𝒕�(𝑠𝑠′) × 𝒏𝒏�(𝑠𝑠′)     (2) 
 
In the tangent, normal, binormal coordinate system, for the special case of a straight cable, with a helically 
wound cable, 
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Figure 1: Schematic showing the fibre position f, constructed from a sum of the cable position c, and 
the helix position h. Along with the arc length along the fibre.    
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With v(γ) = r tan(γ). If we instead have an arbitrary cable, and we rotate the helix into the standard 
cartesian system.  
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Where, R, is the rotation matrix, taking the helix from the tangent, normal, and binormal coordinate system 
to the classic Cartesian system. The final and most important quantity required of the FGSM geometric 
model is the fibre tangent, T� = df/ds. It is along this tangent direction that the interrogator senses seismic 
strain.  

Velocity-stress finite-difference formulation  
Finite-difference schemes based on a velocity-stress formulation rely on the computation of particle 
velocity, and stress to propagate a wavefield by solving the elastodynamic equation of motion (i), Hooke’s 
law (ii), and the stress-strain relation (iii):  
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Taking the time derivative of the stress-strain relation, and substituting particle velocity for the derivative of 
the displacement with respect to time, the velocity-stress finite-difference scheme solves for the particle 
velocity and stress at each time step. Doing so on a grid where stress and velocity are staggered from 
each other by a half time step, and where each component of velocity (stress) is offset by a half step in 
space is the most stable scheme. Solving equations 5 (i) and (ii), in an alternating fashion produces 
snapshots of the wavefield at each time. Remembering that DAS fibres measure the tangential strain along 
the fibre, we require a measurement of strain from our finite-difference model. Recognizing that the time 
derivative of the stress strain relation relies solely on spatial derivatives of the particle velocity, we may 
readily compute the strain rate (ekl)̇  from values computed during the wave propagation. 
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Rotating the strain rate tensor back into the tangent, normal, and binormal coordinate system, and 
extracting the tangential (ėtt) component at every spatial location, gives the response of DAS fibre to the 
progating wavefield at a given time. Repeating this for every time step in the finite difference simulation 
gives the resulting shot record for the DAS fibre geometry of the FGSM.   

Examples 
Computing the response of a 1C geophone to a wavefield, using the velocity-stress method can be 
achieved simply by extracting the value of the particle velocity at the geophone locations at each time 
step. Conversely, when computing the response of a DAS fibre, the situation becomes more complex. 
The six strain rate components, an example of which are shown in figure 2 must be computed, rotated 
into the tangent, normal, and binormal coordinate system, and the tangential component must be 
extracted at each timestep. Figures 3,4, and 5 show the modeled response of straight, helical wound, 
and nested two-helix respectively. Figure 3, shows the well-known broadside insensitivity of straight DAS 
fibres, where the fibre is least sensitive to wave impinging at near normal angles. Figures 4 and 5 show 
that more complex fibre geometries remedy this problem, but that the resulting signal is more complex. 



  

 
GeoConvention 2017 4 

 

 

 

 
 
 
 
 

 
 
 
 
 
 
 

Conclusions 
We briefly build review the CREWES fibre geometry and sensing model and add to it by developing tools 
that allow for the creation of shot records from a propagating wavefield. This tool will allow for the appraisal 
and laboratory testing of candidate fibre geometry shapes, with the goal of being able to design fibres with 
shapes that suppress portions of the wavefield. Additionally, any inverse problem that hopes to use DAS 
data, will require a forward model, a tool which we have now developed. It is hoped that this work will find 
use in applications to FWI and microseismic source evaluation.  
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Figure 2: Strain rate tensors: (a) 𝑒̇𝑒𝑥𝑥𝑥𝑥, (b) 𝑒̇𝑒𝑦𝑦𝑦𝑦, 
(c) 𝑒̇𝑒𝑧𝑧𝑧𝑧, (d) 𝑒̇𝑒𝑥𝑥𝑥𝑥, (e) 𝑒̇𝑒𝑥𝑥𝑥𝑥, (f) 𝑒̇𝑒𝑦𝑦𝑦𝑦    

Figure 3: Response of a straight fibre to a 
wavefield    

Figure 4: An example of a helically wound fibre (left), and the resulting shot record (right).    

Figure 5: An example of a nested two-helix fibre (left), and the resulting shot record (right).    
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