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SUMMARY 

 

Accurate modeling of seismic wave propagation in the 

subsurface of the earth is essential for understanding 

earthquake dynamics, characterizing seismic hazards on 

global scales and hydrocarbon reservoir exploration and 

monitoring on local scales. These are among the most 

challenging computational problems in geoscience. Despite 

algorithmic advances and the increasingly powerful 

computational resources currently available, including fast 

CPUs, GPUs and large volumes of computer memory, there 

are still daunting computational challenges in simulating 

3D seismic wave propagation in complex earth 

environments. Recent advances in quantum computing are 

suggestive that geoscience may soon begin to benefit from 

this promising field. For example, Finite Difference (FD) 

modeling is the most widely used method to simulate 

seismic wave propagation. In the frequency domain, FD 

methods reduce solutions of the wave equation into systems 

of linear equations; such systems are just the type that 

quantum algorithms may be capable of solving with 

exponential speedup, in comparison with classical 

algorithms. For the computational geophysicist, to prepare 

to take advantage of these speed-ups, which could arrive in 

as few as 5-10 years, the tasks at hand are (1) to become 

familiar with the logic and concepts associated with 

quantum computing, and (2) to map our key computational 

algorithms (e.g., frequency domain FD) to this domain.   

 

CONCEPTS IN QUANTUM COMPUTATION 

 

Unlike a classical bit, which exists either in 0 or 1 states, a 

quantum bit (qubit), the building block of quantum 

information, can exist in a coherent superposition of two 

distinct states. In the quantum regime, 0 and 1 are two 

orthonormal states represented by   |0� = �1 0��and|1� =
�0 1��. A qubit is represented by |	� = 
|0� + �|1�, 
where 
 and � are probability amplitudes. Measuring the 

qubit results in either |0� or |1�, with respective 

probabilities |
|
 and |�|
 satisfying |
|
 + |�|
 = 1. In a 

quantum computer, a system of � qubits can exist in 2� 

states simultaneously, whereas in a classical computer, a 

system of � bits can store and process only one of 2� states 

at a given time. For example, a two-qubit system is capable 

of holding four two bits of information simultaneously; 

i.e. |00�, |01�, |10� and |11�. This coherent superposition is 

the essence of the supremacy that quantum computing 

offers over its classical counterpart. Quantum algorithms 

are unambiguous instructions, based on effects such as 

quantum coherence and entanglement, that are able to solve 

problems faster and with less computational complexity 

than their best classical algorithms (Nielsen and Chuang, 

2000). In Figure 1 we show an illustration of a quantum 

search algorithm, which can locate a particular item in a 

database in very few passes, independently of the size of 

the dataset. In each iteration, without actually measuring 

the physical state of each sample, the amplitude of the 

desired answer is amplified until the correct answer is 

achieved with an optimal probability. 

  

 
Figure 1. Illustration of amplitude amplification in the search 

algorithm. The size of the search space is 64 and the number of 

iterations to achieve the correct answer with high probability is 6.  

 

On the other hand, there are significant obstacles in the 

application of quantum computers to numerical 

computations. Unlike classical computers, error correction 

is challenging for quantum computers. First, qubits are 

physical objects in nanoscale such as atoms, trapped ions or 

photons. Interactions of quantum computer with the 

environment affect the computation. Consequently, the first 

step to attain an error-free quantum computation is the 

isolation of physical qubits from any unwanted interactions. 

Second, direct measurement of numerical errors is 

problematic because the act of measuring the state of a 

qubit collapses it to a classical state, destroying the 

quantum correlation which is crucial for the desired 

speedup. Third, since qubits can exist as a superposition of 

multiple states, in addition to bit flip error, there is another 

non-classical source of error called phase error. As an 

example, a qubit 
|0� + �|1� over time may change 

to 
|0� − �|1�. The standard way to recover a qubit from  

quantum errors is to utilize ancillary qubits called physical 

qubits. The idea is to transfer errors from logical qubits to 

physical qubits, and then discard them without measuring 

the logical qubits. Initially, the number of physical qubits to 

correct for arbitrary errors from a single qubit was nine 

(Shor, 1995) and later seven (Steane, 1996). The smallest 

number of physical qubits that physicists have yet proposed 

is five (Laflamme, 1996). Also, to allow a universal set of 

quantum gates to be used on the logical qubits, we need 

some extra resources called magic states. These states are 



 

prepared using additional qubits and injected to the system 

(O'Gorman, and Campbell, 2017). 

For example, implementation of factorization with Shor’s 

algorithm for a 2000-bit number (600 decimal digits) 

requires approximately 4000 computational logical qubits. 

To successfully execute the algorithm with low error rate 

we need about 3600 physical qubits (including the magic 

qubits) per logical qubit. In total, to run the Shor algorithm 

to factorize the 2000-digit number we need approximately 

one million qubits (Fowler, 2012). Evaluation time for this 

task with 1MHz speed takes four days. So far, the largest 

number that can be factorized on the most powerful 

supercomputers is 768-bit number, and it took two years. 

  

There are various schemes for physical implementation of 

quantum computation including, atoms, photons, trapped 

ions and electrons (Nakahara and Ohmi, 2008). Other 

potential candidates for qubits are superconducting circuits 

that behave as artificial atoms exhibiting a tunable energy. 

States ‘0’ or ‘1’ correspond to the absence or presence of 

microwave photons or the oscillating electrical current 

through a loop.  One of the important requirements to 

implement a quantum computer is to have long relevant 

decoherence times, much longer than the gate operation 

time. In other words, the lifetime of a qubit should be much 

longer than the logic gate operation time. In this way, a 

quantum computer has enough time to execute gates before 

qubits’ coherence is destroyed. For example, for ion traps 

decoherence time is 20s, which is much longer than gate 

operation times (0.01 ms). Electron spin qubits have the 

fastest gate times (~ns) with fastest decoherence  time 

(~30μs). On the hardware side, many research groups and 

companies around the world are working on developing 

mini quantum computers for both commercial and research 

purposes. Among them, D-wave is the sole company that 

offers a quantum simulator capable to solve certain tasks 

known as optimization problems. Although D-wave is not a 

universal quantum computer, it has been utilized for certain 

quantum calculations. The regime in which D-wave 

operates is called quantum annealing.   

Despite advances in the theoretical framework, the physical 

realization of quantum computing is still technologically 

daunting.  Reliable quantum computers that actually 

demonstrate the exponential speed increase over their 

classical counterparts are not going to be immediately 

available. Well-known algorithms such as database search 

and prime factors of large integers have been demonstrated 

on few qubits in labs, and this represents serious progress 

in the field. The first genuine application of a quantum 

computer with 50 qubits (recently announced by IBM) 
under the assumption that the quantum computer operation 

is error-free, would allow for the simulation of a system 

with 50 particles, and this is a problem that is intractable 

with the current most powerful supercomputers. 

To be able to investigate quantum algorithms in the 

absence of a scalable quantum computer, it is necessary to 

simulate their behavior on classical computers. This allows 

us to connect the theoretical advancement of quantum 

computation with its physical realizations. We emphasize 

that no speedup should be expected when we run a 

quantum algorithm on a classical computer; the exercise 

allows algorithms to be prepared for the introduction of a 

real quantum computer. The largest classical simulation so 

far was made in a 45-qubit circuit on the Cori II 

supercomputer using 8, 192 nodes and 0.5 petabytes of 

memory (Häner, T. and Steiger, 2017). To put things in 

perspective, the number of states that can be stored in 50 

qubits is 2��~10��=1 Petabyte. 

 

Consequently, a 50-qubit simulation required over 1 

Petabyte of main memory to store results.  

 

COMPUTATION CHALLENGES IN GEOSCIENCE 

 
Is it possible that a scalable quantum computer capable of 

modeling 3D seismic wave propagation in a complex 

model of the earth could be developed in the next few 

years?  To simulate seismic wave propagation in a 3D earth 

model, especially for resolving the high-frequency content 

of the data to capture small-scale features, we need a 

supercomputer with peta (10��Flops) - or even exascale 

(10��Flops) power. For example to simulate wave 

modeling with a  10� grid cells and 10�� degrees of 

freedom we need a 1 PFlops supercomputer (Breuer, et al, 

2014). As an example of the need for Tera-scale 

computational power, the simulation of an M8 earthquake 

in the Southern California fault up to 2 Hz for 360s requires 

220 TFlops on NCCS Jaguar using 223,074 cores for 24 

hours. The simulation volume is 3.2× 10�km
  with a 

depth of 85 km meshed by 436 billion of 40 m� cubes (Cui 

et al. 2010). Analytical solution of wave propagation in the 

earth is possible with the assumption of spherical 

symmetry. However, a realistic model of the earth should 

include ellipticity as well as heterogeneous structures in the 

crust and mantle. For this reason, various numerical 

modeling schemes used to simulate wave propagation in 

realistic 3D earth models, such as the forward modeling for 

global and continental scales, are based on the Spectral 

Element Method (SEM). For local-scale exploration 

seismology, on the other hand, they are based on the finite-

difference (FDM) or finite-element methods (FEM). 

 

Finite difference modeling is a well-known technique to 

simulate seismic wave propagation in the subsurface of the 

earth. In this method, the medium is parameterized in a way 

that each node associates with a property of the earth. The 

finite difference thereafter is applied to each node to 

propagate the seismic wave from one time step to another. 

The problem of seismic modeling is challenging to solve 



 

for complex earth models due to earth extremely large 

dimensions. For example, to define a cube of an anisotropic 

earth model with dimensions 10×10× 10 km� and 10m 

grid spacing, 10�� parameters are required. With this model 

and 10� time steps we need 10�� grid point time steps. 

Assuming an area of gridded sources with 10� shots, we 

need roughly  10�� Flops (10 PFlops). This can be run on 

an IBM Blue Gene/Q which can carry out 20 PFlops. In 

contrast, quantum computers that achieve high performance 

by means of natural parallelism between entangled qubits, 

are capable of performing the aforementioned calculations 

with a small number of qubits. For the above example, 

 10��~2�� Flops. Consequently, we can run such forward 

modeling only with 53 qubit quantum computer (assuming 

error free). 

 

Let us next look in more detail at the computational 

complexity of 3D elastic wave modeling. Assume that the 

number of grid points in each direction is N, so the total 

size of the 3D model is  �. The number of sources 

(receivers) would be  
 as they are distributed on the 2D 

surface. In the time domain the number of time steps is 

proportional to N, so the computational complexity for 3D 

time domain elastic modeling is in order  �(Li et al. 2015).  

 

Seismic inversion needs more computational power than 

does simulation, as it requires the forward modeling of 

wave propagation to be carried out several times. 

Compared to conventional inversion methods, full 

waveform inversion (FWI) attempts to exploit the 

information content of the entire seismic waveform in a 

limited frequency band (Fichtner, 2010). In this technique, 

the inverse problem is solved through the minimization of a 

misfit (objective) function between the observed data and 

modeled (synthetic) data. The inversion is based on 

iterative local optimization methods such as steepest 

descent and conjugate gradients. A key step in FWI is to 

calculate the gradient of the misfit function with respect to 

the model parameters so-called Born or Fréchet kernel. For 

a one-parameter model, for example, an acoustic medium 

with constant density, the gradient of the misfit function 

respect to velocity is proportional to !"∆$, where ∆$ is the 

wavefield residual. In addition, ! is the % × � Fréchet 

kernel matrix, each element of which, !&' , is the derivative 

of the ith data value with respect to the jth model 

parameter. Using the matrix ! we can calculate the Hessian 

matrix ℍ = !"!. This matrix consists of the second-order 

partial derivatives of the misfit function. The steepest-

descent direction is proportional to  !"∆$, and the Newton 

direction is proportional to  �!"!�)� !"∆$. For the Gauss-

Newton method, the computational time is the summation 

of the cost for forward modeling, steepest-descent and 

Newton directions calculations. Assuming that the 

dimension of the model is N, the computational time for a 

frequency domain solver for a single forward modeling in 

2D is  �. Since the number of shots (receivers) is 

proportional to N, the complexity for the total forward 

modeling is  �. In 2D, the velocity field has � =  
 

components and the dimension of the data is % =
�*+,-./ × �-/./01/-~ 
. Consequently the computational 

complexity of the steepest-descent and Newton directions 

is % × �~ �, the same as the total computational cost for 

forward modeling. In 3D, the number of shots (receivers) is 

proportional to  
 and for each shot the computational cost 

reaches  �. Together, the computational complexity for 

FWI in 3D reaches  �(Table 1). Let us assume that the 

dimension of the problem is  ~2�10�), therefore the 

number of operations that we need to execute for the 2D 

acoustic FWI with constant density is 10�
 Flops=1 

TFlops. Therefore, FWI for 2D acoustic acquisition is still 

practical (Butzer et al. 2013), but not for 3D acquisition, 

since we approximately need  10
� Flops=1 YFlops. This 

is far beyond the power of current supercomputers. Now, 

let us see how many qubits in a scalable quantum computer 

can solve these problems. We can run a 2D acoustic FWI 

with a quantum computer with log
 10�
~40 qubits. This 

is the kind of universal quantum computer that is presently 

available. However, the 3D FWI problem is intractable 

even for current quantum computers: to solve this problem 

we need an error-free quantum computer with 

log
 10
�~80 qubits (the largest available quantum 

computer at this moment has 50 qubits).   

To estimate the number of required physical qubits to 

correct errors for this problem, we need to design and 

analyze the quantum algorithm in detail.  Let us calculate 

the computational cost of 3D FWI for an ideal case with 

full spatial coverage of sources and receivers every 30 m in 

each direction for a surface domain 3km×3km. In each 

lateral direction, we have 10
 sources (receivers) and in 

total the acquisition consists of 10� sources (receivers). If a 

time sampling of 2ms is used and each receiver measures 

1000ms of data, this is equivalent to 500 data points per 

receiver. If we use high-resolution cube grid cells of size 

27m� for the acoustic case, we need to recover 108 

velocity values. To apply the conjugate gradient method for 

FWI, we must model a Fréchet kernel of size �10� × 10� ×
500 × 108�~5 × 10: TB. Ideally, this amount of data 

should be saved on memory to be used during each 

conjugate gradient iteration. The largest computer memory 

built by HPE, is 160TB. It is evident that there is no 

physical memory available to handle such a huge amount 

of data, as result a perfect 3D FWI even for acoustic media 

with current supercomputer capabilities is not practical. 

However, even a small quantum computer can solve this 

expensive problem with only log
� 5 × 10�8 �~65 qubits.  

Frequency domain forward modeling has advantages over 

time domain modeling if the number of iterations times the 



 

number of frequencies is much less than the number of 

time.  

 

 

Modeling Time 

domain 

  Frequency  

  domain 

2D >?>@A�BC� >?>D AEBFG 

3D >?>@A�BF� >?>D AEBHG 

 

Table 1. Computational cost of the forward modeling in time and 

frequency domain.  

 

Method                                                     Complexity  

Gauss elimination                                   O(BC) 

Jacobi/Gauss-Seidel iteration                 O(BC IJK L) 

Conjugate gradient                                 O(BF/C IJK L) 

Nested dissection                                   O(BF/C) 

Alternating-direction iteration              O(B IJK B IJK L) 

Multigrid (iterative)                               O(B IJK L) 
 

Table 2. Computational complexity of the classical solvers for 

Helmholtz equation in terms of size of dimension of model N and 

error L.  

 

QUANTUM FORWARD MODELING ALGORITHMS 

 
Recent developments in quantum algorithms promise 

efficient quantum solvers for high dimensional linear 

systems of equations with potential applications in diverse 

fields such as machine learning, signal processing, and 

others which are important for the geosciences.  The most 

recent algorithm called HHL (Harrow et al. 2009) 

demonstrates the inversion of  ×   matrix A in run time 

2 N�
O P
Q
 log  R  to solve S = T)�U, where  Q is the 

condition number of matrix A, i.e. the ratio between the 

largest and smallest eigenvalues of A; s is the number of 

nonzero entries per row and  V is the acceptable error for 

the output, i.e. the maximum allowed distance between the 

solution and the true result. The best general purpose 

classical matrix-inversion algorithm, the conjugate-

gradient, has a run time of 2 N PQ log �
OR. Therefore, the 

HHL algorithm offers an exponential speed up in terms of 

the size of the linear system. However, there is a restriction 

on the condition number Q that must be scaled poly-

logarithmically with the size of the matrix (Q~polylog� �) 

(Childs et al. 2017). Although the HHL algorithm is faster 

than classical algorithms in terms of N, it is linearly slower 

in sparsity s and condition number Q, and exponentially 

slower in precision number V. Recently it has been shown 

that for dense matrices with P~  the running time to invert 

a matrix is 2 N�
O Q
√ log  R (Wossnig e al. 2018). Several 

HHL experiments have been proposed to solve small-size 

matrix inversion problems using the currently-available 

technology Optical (Barz et al. 2014) and Superconducting 

Quantum Processors (Zheng et al. 2017). The HHL 

algorithm has also been implemented to solve the Poisson 

equation in N-dimensions. Other related work has been 

done for solving finite element problems by means of 

quantum algorithms. In addition, based on the HHL 

algorithm, several proposals introduced machine learning 

methods to solve such problems (Ciliberto et al, 2018), e.g., 

implementation of quantum linear regression for pattern 

recognition (Wang, 2017).  

 

Conclusions 
While future scientific applications of quantum computing 

have been considered quite widely, its potential in 

geoscience has so far been largely unstudied. A basic 

question regarding any kind of quantum algorithm is how 

much faster it can be compared to the most efficient 

classical algorithms. Quantum computers do not offer 

exponential speed up for every classical problem. For 

example, a quadratic speed-up in search space size is 

predicted for a database search problem. However, for 

integer factorization in prime factors quantum algorithm 

runs exponentially faster on a quantum computer. Recently, 

a quantum algorithm to solve a linear system of equations 

with a running time exponentially faster than the best 

classical algorithm has been formulated. This algorithm 

suggests the same speedup for seismic wave modeling. 

With the recent breakthroughs in the construction of the 

universal quantum computer (IBM) and quantum simulator 

(D-wave), we anticipate quantum computation to expand, 

and be realized in computational methods in geoscience, 

including, e.g., 3D wave modeling and full waveform 

inversion. 
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