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Summary  
We discuss the process of acquiring seismic data using distributed acoustic sensing. We then 
describe the analytic model used to depict this process mathematically. We find the strain 
tensor for the full-waveform by separating the problem in to the case for the P-wave strain 
tensor and the S-wave strain tensor. We show examples of the model for the P-wave response 
of the fibre in two different media. We compare the results of the S-wave response for helical 
and straight fibre. Finally, we examine the full-waveform response of the fibre and consider the 
results using different gauge lengths.  
 
Acquisition using DAS and Fibre Optic Cables 
In seismic acquisition, a fibre optic cable is installed in a specific configuration. In this project, 
we consider a fibre optic cable buried horizontally 10 meters beneath the earth's surface over 
100 m. A source is positioned in the centre of the fibre at the Earth's surface. Once the source 
detonates, it sends waves into the ground. When these waves hit the fibre, they stretch and 
strain the fibre optic cable. The strain on the fibre is recovered by an interrogator attached to the 
cable using a laser pulse that interacts with imperfections in the cable. 
 
In the case of constant velocity, seismic waves move through the earth's subsurface in a 
spherical shape. In fact, an exercise in calculus shows that the Laplace operator can be 
considered in terms of radial solutions. We utilize the solution 𝑢𝑢 of the acoustic wave equation 
written in terms of the P-wave and S-wave components  

𝑢𝑢 = 𝛻𝛻Φ + 𝛻𝛻 × Ψ 
which can be derived from the wave equation using the Helmholtz Decomposition Theorem (Aki 
and Richards, 2002).  
 
In this experiment, the strain is the measure of how much the wave moves the fibre. The 
equation for strain is defined as follows  

𝜖𝜖𝑖𝑖𝑖𝑖 =
1
2 �
𝜕𝜕𝑖𝑖𝑢𝑢𝑖𝑖 + 𝜕𝜕𝑖𝑖𝑢𝑢𝑖𝑖�. 

The strain 𝜖𝜖 is a symmetric 3 × 3 matrix with three eigenvectors and three eigenvalues which 
describe how much the material moves in each of three orthogonal directions. 
 
To recover the response of the fibre, we consider the fact that the wave hits the fibre at any 
given point 𝐩𝐩(𝒔𝒔𝟎𝟎) where 𝐩𝐩 is the path of the fibre. At some point in space, the fibre-optic cable 
has a tangent vector 𝐓𝐓𝐩𝐩 = 𝐓𝐓𝐩𝐩(𝑥𝑥,𝑦𝑦, 𝑧𝑧), which we assume is normalized. The amount of stretching 
at this point is given by the product of the strain matrix with the tangent vector. Thus, we can 
determine the strain at this point on 𝐩𝐩 by the following equation 

𝐴𝐴(𝑠𝑠, 𝑡𝑡) = 𝐓𝐓𝐩𝐩(𝑠𝑠)𝜖𝜖(�𝐩𝐩(𝑠𝑠))𝐓𝐓𝐩𝐩′(𝑠𝑠) 



 

where the matrix 𝜖𝜖��𝐩𝐩(𝑠𝑠)� is the strain at the point 𝑠𝑠 on the path 𝐩𝐩 of the fibre which is a 
distance 𝑟𝑟 = �𝐩𝐩(𝑠𝑠) away from the source at the origin.  

Comparing the Effects of Gauge Length 
We will now show the results of the effect that different gauge lengths have on the full-waveform 
response. We use the max P-wave and S-wave velocity found in saturated shales as given in 
(Bourbiè et al., 1987). We only consider the vector 𝐴𝐴 = [0,0,1] for the S-wave potential as it 
produced the sharpest image for both straight and helical fibre (Hardeman-Vooys et al., 2018). 
Over a distance of 100 m, we compare the following gauge lengths: 5 m, 10 m, 20 m and 25 m.  
 

 
Figure 1: The full-wave response of the straight fibre in saturated shale when A = [0,0,1] for (top left) Gauge length 5 m, (top 
right) Gauge length 10 m, (bottom left) Gauge length 20 m, and (bottom right) Gauge length 25 m. 

 

 
 



 

Fig. 1 shows the response of the straight fibre in shale for four different gauge lengths, where 
gauge length is a property of the DAS system related to the pulse width of the laser 
interferometer. The image is the sharpest for gauge length 5 m with the result for gauge length 
10 m only slightly less sharp; however, we see a spreading of the hyperbola for gauge length 20 
m and 25 m. 
 
Recall that the gauge length considers the results of a small portion of the signal at a time, i.e. 
for our model: 5 m, 10 m, 20 m or 25 m. During that portion, gauge length is contracted or 
stretched depending on the shape of the signal. Since the response of the fibre is a hyperbolic, 
the larger gauge lengths contain a larger portion of the hyperbola. So, it holds more stretching 
and contracting information such that the two could cancel each other out as seen in the 
spreading of the hyperbolas in the results for gauge length 20 m and 25 m.  

 
Figure 2: (Left) Comparison of the gauge lengths with respect to the full-waveform signal at 𝑡𝑡1 of the straight fibre: (Blue) 
Original signal at 𝑡𝑡1 (Red) Gauge length 5m, (Yellow) Gauge length 10m, (Purple) Gauge length 20m, and (Green) Gauge length 
25m.  (Right) Comparison of the gauge lengths applied to the full-waveform signal at 𝑡𝑡1 of the straight fibre: (Blue) Gauge 
length 5m, (Red) Gauge length 10m, (Yellow) Gauge length 20m, and (Purple) Gauge length 25m. 

Fig. 2 (left) gives a physical representation of what we described in the previous paragraph. The 
gauge length 5 m only contains an increasing portion of the signal around the origin. The gauge 
length 10 m contains some decreasing signal but mostly increasing signal around the origin. 
Both gauge length 20 m and 25 m contain a lot of increasing and decreasing portions of the 
signal enough to cancel out the response at the origin which we see occurs in Fig. 2 (right) for 
larger intervals around the origin as the gauge length increases. Fig. 2 (right) only describes 
what occurs for the first time step 𝑡𝑡1 of the full-waveform response of the straight fibre. It 
provides a good visual explanation for the spreading which occurs for the larger gauge lengths 
in the bottom two images of Fig. 1.  
 
While the helical fibre provides a dampened amplitude in comparison to the straight fibre, the 
helical fibre shows a similar spreading to the straight fibre between the different gauge lengths. 
As the gauge length gets larger, the signal spreads apart as it did with the straight fibre. Fig. 3 
provides a reference of the first time step 𝑡𝑡1 of the full-waveform response of the helical fibre to 
different gauge lengths. On the left, the gauge length has not been applied to the signal at the 
first time step 𝑡𝑡1 of the full-waveform response of the helical fibre. On the right, the four different 



 

gauge lengths have been applied to the signal. As with the straight fibre, the larger gauge 
lengths contain more increasing and decreasing portions of the signal which cancel each other 
out resulting in the signal spreading. Also, the full-waveform response for the helical fibre results 
in a flattened peak for the hyperbolic response as the gauge length gets larger whereas the 
straight fibre’s hyperbolic response resulted in multiple peaks.  
 

 
Figure 3:(Left) Comparison of the gauge lengths with respect to the full-waveform signal at 𝑡𝑡1 of the helical fibre: (Blue) Original 
signal at 𝑡𝑡1 (Red) Gauge length 5m, (Yellow) Gauge length 10m, (Purple) Gauge length 20m, and (Green) Gauge length 25m.  
(Right) Comparison of the gauge lengths applied to the full-waveform signal at 𝑡𝑡1 of the straight fibre: (Blue) Gauge length 5m, 
(Red) Gauge length 10m, (Yellow) Gauge length 20m, and (Purple) Gauge length 25m. 

Conclusions  
We began with an explanation of the model. We studied the effects that different gauge lengths 
had on the full-waveform response for straight fibre. The larger gauge lengths produced a 
spreading in the response which was not found in the smaller gauge lengths. We noted that this 
is largely due to the amount of the signal contained in the larger gauge lengths which resulted in 
some cancellations.  
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