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Summary 
We propose a full waveform inversion (FWI) based LSRTM method in the frequency domain. 
We use the FWI formulation with the truncated Newton’s method, to solve the linear equation 
which relates Hessian, model perturbation and the gradient by linear conjugate gradient 
method. We use simple layer models to compare the two formulations, LSRTM in time and 
frequency domain. Because of convergence problems that we have not solved yet, we get lower 
resolution images with the frequency domain FWI-LSRTM method. On the other hand, when the 
model is inaccurate, the reflector depth seems less affected in the frequency domain. The FWI-
based LSRTM method seems to be more robust to velocity errors even if we don’t correct the 
background model as usually done in FWI. Low frequencies seem to be less affected by the 
inaccurate velocities, and by model smoothness than the high frequencies, suggesting using 
methods from low frequencies to constraint the high frequencies can help to develop a more 
robust LSRTM. 

Introduction 
The recorded seismic data can be treated as the result of forward modeling problem and this is 
associated with solving the wave equation. For seismic migration, the migration operator is 
adjoint to the forward modeling operator. RTM, as a two-way migration method, migrates the 
data residual using a zero-lag cross-correlation on the forward and backward propagated 
wavefields. For conventional LSRTM methods in acoustic medium, the velocity model can be 
split into two parts: a long-wavelength component, which corresponds to the low frequency 
feature, and a short wavelength component, which corresponds to the high frequency feature in 
the model (Geng and Innanen, 2016). Based on this, the wavefield also consists of two parts: 
the incident wavefield using wavelets as the source and the scattered wavefield using data 
residual as the source. By the iterative algorithm of Born modeling and RTM, the reflectivity 
model is solved by the conjugate gradient method. However, this method depends largely on 
the initial model, such that if the initial model is inaccurate then the result is also wrong. Similar 
to LSRTM, FWI problems can be solved by a two-loop algorithm: the inner loop is to iteratively 
solve for the model perturbation and the outer loop is to update the current model and compute 
the synthetic data to get the new residual. The inner loop can be treated as the LSRTM problem 
(Chen and Sacchi, 2018). In fact, the gradient of the objective function can be proved to be 
equal to the image condition of RTM. Therefore, the optimization of the gradient is a way to 
implement LSRTM. By the Gauss-Newton approximation, using truncated Newton’s method is a 
good way to solve this problem (Pan et al., 2017). The Hessian-vector product is calculated in 
each iteration in a matrix-free form. This method seems to be more robust to the inaccuracies in 
the velocity model although the convergence problems are not solved yet. 

Theory 
The acoustic wave equation in matrix form is 

𝐴𝐴(𝑚𝑚,𝜔𝜔)𝑢𝑢(𝑚𝑚, 𝑥𝑥𝑠𝑠,𝜔𝜔) = 𝑓𝑓(𝑥𝑥𝑠𝑠,𝜔𝜔), 



 

where 𝐴𝐴(𝑚𝑚,𝜔𝜔) = (𝜔𝜔2𝑚𝑚(𝑥𝑥) + ∇2) is the impedance matrix, 𝑚𝑚 is the model. In Born 
approximation, the wavefield can be separated into 2 parts: the incident wavefield and the 
scattered wavefield. 
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𝑢𝑢0(𝑚𝑚,𝜔𝜔). 

𝑢𝑢0(𝑚𝑚,𝜔𝜔) is the incident wavefield and 𝛿𝛿𝑢𝑢(𝑚𝑚,𝜔𝜔) is the scattered wavefield. Applying the adjoint 
state method on the two wavefields, we have the RTM imaging condition 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) = ��
1
𝜔𝜔2

𝑛𝑛𝜔𝜔𝑛𝑛𝑠𝑠

𝑅𝑅𝑅𝑅 �𝛿𝛿𝑢𝑢𝐺𝐺0
†(𝑥𝑥𝑠𝑠|𝑥𝑥)𝐺𝐺0

†(𝑥𝑥|𝑥𝑥′)𝑓𝑓†(𝑥𝑥𝑠𝑠,𝜔𝜔)�, 

where 𝑅𝑅𝑅𝑅(∙) is the real part and 𝐺𝐺0
†(𝑥𝑥𝑠𝑠|𝑥𝑥) and 𝐺𝐺0

†(𝑥𝑥|𝑥𝑥′) represent the conjugate transpose of the 
Green’s functions, which illustrates the cross-correlation of two wavefields as the imaging 
condition of LSRTM. For the FWI-based LSRTM, the algorithm is formulated from the objective 
function of FWI.  The gradient of FWI objective function is 
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where 𝑅𝑅 is the vector with receiver coordinates. Compare the gradient equation with the RTM 
imaging condition, we conclude that the imaging condition of RTM is equal to the gradient of the 
FWI objective function, except for the small coefficient changes. After expanding the objective 
function of FWI in Taylor series, we have the objective function of FWI-based LSRTM in image 
domain is  
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where 𝐻𝐻 is the Hessian operator and the Hessian vector product using Gauss-Newton 
approximation is 
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To solve the linear equation, we use linear conjugate gradient method to get 𝛿𝛿𝑚𝑚 iteratively. 
For time domain least-squares reverse time migration, the cross-correlation image condition is 
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which represents the process of the source wavefield 𝜙𝜙𝑠𝑠(𝑥𝑥, 𝑡𝑡) and the receiver wavefield 
𝜙𝜙𝑟𝑟(𝑥𝑥,𝑇𝑇 − 𝑡𝑡) cross-correlation. This imaging condition is the same as the imaging condition 
in the frequency domain. 

Results  
In this section, we will show several tests to compare the time domain and the FWI-based 
frequency domain LSRTM for cases when the velocity model is wrong. The goal is to observe if 
either approach is more robust than the other. The model dimensions for all the tests are 126 
points for the vertical axis and 384 points for the horizontal axis and the grid spacing is 8m. FIG. 
1. shows a 2-layer model with velocities of 3000m/s for the upper layer and 4000m/s for the 



 

lower layer. The interface is at depth 560m and the wrong velocity model is set to a constant 
value of 3300m/s. The migration results are shown in FIG. 2. Because the velocity of the first 
layer is wrong (3300m/s instead of 3000m/s), the reflector depth is wrongly mapped for the time 
domain RTM, to around 600m instead of 560m, deeper as expected for velocity too fast. On the 
other hand, the FWI-based frequency domain LSRTM seems to provide the correct location, 
although the resolution is poor. The goal of this ongoing research is to find out why the 
frequency domain migration has this lower resolution but seems more robust than the time 
domain. 

 
FIG. 1. The true model and the initial model for a 2-layer model 

 
FIG. 2. RTM of a 2-layer model in frequency and time domain 

In another test, we use the Marmousi model, again with wrong velocities. To create the wrong 
velocities, we apply a heavy smoothing. FIG. 3. shows the true model and the smoothed model. 
Comparing the results in different domains (FIG. 4. and FIG. 5.), the FWI-based LSRTM can 
locate the reflectors at approximately correct locations but suffers from the noise and 
convergence problems. The FWI-based LSRTM seems to have more details than the time 
domain version, in particular deeper in the section. 

 



 

FIG. 3. The true model and the initial model of the resampled Marmousi model 

 
FIG. 4. RTM of the Marmousi model in frequency and time domain 

 
FIG. 5. LSRTM of the Marmousi model in frequency and time domain 

Conclusions 
We investigate an FWI-based LSRTM in the frequency domain. This method is based on the 
objective function of FWI and uses truncated Newton’s method to solve for the model 
perturbation. We used two examples to compare these algorithms and understand the strength 
and weakness of each method. The conventional time domain LSRTM has a good convergence 
and sharper image when the velocity model is correct, but when the model is wrong, the 
reflectors are not correctly located. For the FWI-based LSRTM in the frequency domain with 
wrong velocities, although it suffers from convergence problems, it seems to locate the 
reflectors at the correct locations. We speculate that low frequencies seem to be less affected 
by the wrong velocities. If this is true, we expect to be able to develop an RTM in the frequency 
domain that uses information from the low frequencies to constrain the high frequencies. Also, 
we plan to investigate further how the convergence is affected in each case when the velocities 
are wrong. 
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