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SUMMARY

Deep learning techniques appear to be poised to play very im-
portant roles in our processing flows for inversion and interpre-
tation of seismic data. The most successful seismic applica-
tions of these complex pattern-identifying networks will, pre-
sumably, be those that also leverage the deterministic physical
models on which we normally base our seismic methods. Mo-
tivated by the advantages of recurrent neural networks (RNN)
for modelling dynamic processes, a theory-guided RNN is set
up to address the forward and inverse problems. Starting from
the mathematical form of the RNN, we deduce that, under cer-
tain assumptions, the RNN training process can be equivalent
at leading order to gradient-based seismic full waveform inver-
sion (FWI). Our numerical analysis shows the Adaptive Mo-
ment (or Adam) optimization with learning rate set to match
the magnitudes of standard FWI updates appears to produce
the most stable and well-behaved waveform inversion results,
which is re-confirmed by a multidimensional 2D Marmousi
experiment.

INTRODUCTION

Artificial intelligence (AI), primarily in the form of machine
learning (ML) and deep learning technology, is having an enor-
mous impact on applied seismology (Ruano et al., 2014; Chen,
2017; Duan et al., 2018; Chopra and Marfurt, 2018; Wrona
et al., 2018; Zhang and Zhan, 2017; Shen et al., 2018; Jia
etal., 2018; Halpert, 2018; Li et al., 2018) and its practitioners.
However, although seismic geophysics is a highly data-rich
discipline, much of its success has involved methods based on
deterministic physical models. Since we are unlikely to aban-
don the successes derived from determinism, a realistic goal
would be find a balance between what is new and powerful
in pattern-identifying ML technologies, and what is reliable
within the determinism of seismic physical models. For this
reason, the Al paradigm referred to as theory-guided data sci-
ence (Karpatne et al., 2017) would appear to be a good start-
ing point. Mixing theoretical data-model relationships with
those derived during network training has already met with
early success in applied geophysics (Downton and Hampson,
2018). The purpose of this paper is to further expand on this
idea, focusing on the area of waveform inversion.

One natural approach to combining deterministic and pattern-
driven (e.g., ML) methods is to attempt to recreate one in terms
of the other. A small number of heuristic attempts have been
made to pose geophysical forward and inverse problems in
terms of networks. Moseley et al. (2018) presented a fast ap-
proximate wave simulation using a deep WaveNet composed
of causally-connected convolutional layers. Lewis and Vigh
(2017) exploited a convolutional neural network (CNN) to gen-
erate the prior model for FWI optimization. CNN architectures
have also been designed to solve velocity building or inver-
sion tasks in fully end-to-end ways (Wang et al., 2018; Wu

etal., 2018). In the latter cases, the requirements for exhaustive
training datasets, and issues associated with over- and under-
training, are currently difficult to quantify. This is the type of
issue a theory-guided data science approach (Karpatne et al.,
2018) directly attempts to address.

Theory guided data science has been outlined but not prescribed
(Faghmous and Kumar, 2014; Karpatne et al., 2017, 2018), and
while being largely in agreement with its tenets, the work of
actually devising a theory-guided methodology must be done.
In the approach we describe, which amounts to formulating
waveform inversion as a specific example of a trainable re-
current neural network (RNN)), it appears that several benefits,
including and particularly a reduction of the reliance on com-
plete training datasets, and reduction of long computational
times, are possible. Our approach (Sun et al., 2018), which is
similar to independent recent work (Richardson, 2018), is an-
alyzed for robustness and response to hyperparameter tuning
(primarily learning rate) in a 1D velocity inversion setting, and
applied to a 2D synthetic Marmousi example.

THEORY

The RNN waveform inversion has as its associated forward
problem the numerical solution of the wave equation (Carcione
et al., 2002). In 2D acoustic media in with constant density,
the wave equation in the time domain is discretized, such that
under (for instance) a second-order finite difference in time
and space, the wavefield at the current time, £ + At, is expressed
in terms of two previous instants, t and t — At, as

u(r,t +Ar) =2 (1) Ar2 [Vzu(nt) —s(r,t)5(r—rs)] "
+2u(r,t) —u(r,r — Ar).

where V2 is the spatial Laplacian operator, r represents posi-
tion, u is the pressure or displacement, ¢ is the time coordinate,
and s is the source function. Per equation 1, wave propagation
is then iteratively simulated using the source term s and the
wave field at two previous time steps as inputs. This motivates
the formulation of the seismic forward modeling problem in
terms of a recurrent neural network, built such that each layer
(or cell) represents the wavefield at one instant in time.

To build an architecture supportive of seismic inversion, a sin-
gle RNN cell (Figure 1) is set up using the finite-difference
operator, which takes the wavefield at one past instant as in-
put, and produces the modeled shot record (i.e., the projection
of the wavefield onto the measurement surface) at the current
instant, saving the modeled wavefield of this block in mem-
ory for the next time step. The trainable weights in the RNN
were chosen to be subsurface velocity parameters illustrated in
purple in Figure 1.

The standard network training problem is to minimize the square
of the misfit between the output layers of the network, which in
this case are modelled seismic records, with the training data.
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Figure 1: The single cell architecture of the waveform RNN.

This amounts to minimizing the misfit functional J:
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where n is the number of sources, and 8d; = d; — d,, where d,
and d; are training data and RNN-modelled data (respectively)
at a fixed receiver, source position, and time. The updated
function v, 41 (r) is the sum of the current model and an update
Svy(r):

V1 (1) = v (1) + 00 vy (1) 3)
where « is referred to as the learning rate. With gradient-
descent training, the update is based on the gradient of J:

aJ
v (1)
Hereafter neglecting the iteration index n, the gradient of J
with respect to the RNN weights v(r) is computed as

Svp(r) = —gn(r) = — )

T

o7 1 di(r,1)
g(r)z{aﬂ(r,t)} D)’ )

The partial derivative [dJ/dii(r,?)] can be calculated in terms
of the wavefield evaluated at the time increments within the
RNN using the chain rule:

aJ ] aJ di(r, 1+ 2Ar)
{aﬁ(r,t)] N [aﬁ(r,z+2Az)] dii(r' 1)

aJ Ji(r,t + Ar) aJ

* [aﬁ(r,t +At)] Ja(r,n) | damn)’

where 0 <t < T, and initial conditions for RNN backpropaga-

tion are assumed to be zeros, i.e., [0J/di(r,t)],_7 11 742 = 0.

(6)

The partial derivatives of i(r,# + 2Ar) and d(r,z 4+ Ar) with re-
spect to ii(r, ), and of ii(r,r) with respect to v(r) are

dii(r,t +2Ar)
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Substituting equations (7b) and (7a) into equation (6), we ob-
tain
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Equation 8 emphasizes that the partial derivative of the objec-
tive function with respect to the predicted wavefield [0J/dii(r, 1))
amounts to propagating the scaled data residual in reversed
time. In other words, backpropagation through the network, a
standard component of deep learning network training, amounts
to backpropagation of the residual wavefield in time. Letting
the operator BP represent the repetitive application of this tem-
plate back to zero time, and substituting

oJ 1
{aﬁ(r,t)} =BP | A Z Z ) O

into equation (5), leads to

Jt
ZBP —*ZZ V3r ag)' (10)

[

It is apparent from equation (10) that the RNN training amounts
to the crosscorrelation, in time, of the second-order partial
derivative of the forward-modelled wavefield and the back-
propagated residuals. This process is, of course, a recapitula-
tion of the gradient calculation in time-domain full-waveform
inversion (see, for instance, the formulas of Yang et al., 2015).
In other words, FWI can be correctly understood as a special
case of theory-guided RNN training, in which the RNN is suf-
ficiently well constrained in its non-trainable weights, i.e., the
fixed model of scalar wave propagation, that a single training
data set is used.

WAVEFORM RNN HYPERPARAMETER SELECTION

Tuning of the deep learning hyper-parameter (which lies be-
tween 0 and 1) is one of the more difficult, and problem de-
pendent aspects of deep learning design. Successful tuning in
general requires significant empirical analysis and a large num-
ber of trials. The RNN we have designed in this paper is, in
any case, not a typical architecture, so existing guidelines can-
not be assumed to hold a priori. In this section we set up a toy
1D wave inversion problem, both to illustrate the behaviour of
the deep learning based waveform inversion, and to compare
the performances of a variety of optimization algorithms and
hyperparameters.

As a benchmark synthetic model, a 1D 4-layer profile, with
velocities [2, 3, 4, 5]km/s (from shallowest to deepest) is se-
lected, as illustrated in Figure 2a (black solid line). A 1D ver-
sion of the second-order finite difference approach is used to
synthesize the associated seismic record (i.e., the single trace),
as plotted in Figure 2b.
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Figure 2: A depth-varying velocity profile. (a) Black: true
velocity. Red: initial model. (b) Synthetic seismic trace.

Trials are carried out for hyperparameter tuning (i.e., learning
rate selection) to find the best values and useful ranges. In
Figure 3, performances of RNN inversion using variant gra-
dient based algorithms with different learning rates are illus-
trated, where the first column delineates the final inversed re-
sults and the second column plots data errors versus iteration
number. From the first row to the bottom row: gradient De-
scent, momentum, Adaptive gradient (Adagrad), Root-mean-
square propagation (RMSprop), Adaptive moment (Adam).
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Figure 3: The RNN inversion using gradient-descent. (a) In-
version results; (b) Data error versus iteration.

Figure 3a-b shows that gradient descent waveform RNN train-
ing evidently requires a large number of iterations to converge,
even after significant effort has been expended to determine the
best learning rate. In the momentum algorithm, the adapted
learning rate is similar to the gradient descent, and lies be-
tween (0, 1]. As expected, the speed of convergence and the
final predicted results are stabilized by the accumulated gradi-
ents shown in Figure 3c-d. For Adagrad algorithm, following
Duchi et al. (2011), we set the value of the hyperparameter 3
to a fixed value of 0.9, and the result is plotted in Figure 3e-
f. Unlike momentum, the best learning rate for Adagrad in
our tests is 40. We observe that this unusual best learning rate
scope is caused by the scaling coefficient, i.e., magnitude dif-

ferences brought by accumulated squared-norms of the gradi-
ents. A detailed analysis for this can be found in our report
(Sun et al., 2018). Similarly, by setting the scaling coefficient
to be in range of (0, 1], the best learning rate for RMSprop and
Adam can also be discovered as (1,10] and (10, 100] respec-
tively. The results shown in Figure 3h-j cross-examined our
deduction.
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Figure 4: Performance comparison. (a)-(b): best performance
comparison of gradient-based algorithms. (c)-(d): perfor-
mance comparison of non-linear CG, 1-BFGS, Adam.

To make fair comparisons between the gradient-based algo-
rithms we have so far discussed, we select amongst each the
parameters leading to their best performance; these are plot-
ted in Figure 4a-b. We earlier established that the waveform
RNN approach is approximately equivalent to a conventional
gradient-based FWI algorithm. We therefore also implemented
velocity inversion through RNN framework using non-linear
CG and 1-BFGS methods. The comparisons of Adam and
these two second-order optimization algorithms are illustrated
in Figure 4c-d. The results show that Adam, non-linear CG
and I-BFGS are capable of retrieving velocity profiles in close
agreement with the true model, within 200 iterations. In this
1D case, the convergence of Adam is equivalent to that of the
I-BFGS implementation, which in turn is slightly faster than
non-linear CG.

MULTIDIMENSIONAL WAVEFORM INVERSION WITH
RNN TRAINING

To expand the numerical analysis of seismic inversion through
waveform RNN training, we formulate a 2D scalar acoustic
version, and apply it to synthetic data computed from the Mar-
mousi model. A single smoothed velocity model is used to
initialize all RNN training parameters. The true and initial ve-
locity models are plotted in Figure 5a. We generate 12 shot
gathers for source locations at regular 25m intervals at a depth
of 40m from the top of the model.

Each of Adam, CG, and L-BFGS are employed to train the
waveform RNN with data from the Marmousi model. The in-
version results generated with nonlinear CG optimization are
plotted at iterations [400,800,1420]¢h in Figure 6. For con-
sistent and maximally fair comparisons, and numbers which
shed light on overall computational expense, we set iferation
to mean the number of forward modeling simulations. Based
on both this result, and our analysis of non-linear CG on the
1D case, we conclude that non-linear CG is stably conver-
gent, but requires many iterations and is therefore prohibitive
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Figure 5: The synthetic 2D Marmousi model. (a) True velocity
model; (b) initial velocity model.

in terms of computational cost. The counterpart waveform
RNN with 1-BFGS optimization on the 2D Marmousi model,
at the [200,600, 1000]¢A iterations, are plotted in Figure 7. In
comparison with the non-linear CG optimziation, the 1-BFGS
converges at a higher rate. However, the computational cost
(1000 iterations) of the 1-BFGS optimization is high, and the
predicted velocity profiles are missing important features. The
results at iterations [25,50,100]¢h using Adam with learning
rate 40 are plotted in Figure 8. Adam recovers almost all struc-
tural and layer information in shallow zones. After 100 itera-
tions, accurate layer and structural information in deep zones.
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Figure 6: Inversion using the nonlinear CG algorithm. (a) True
model. (b) Inversion at 400z4 iteration. (c) Inversion at 800tk
iteration. (d) Inversion at 1420¢h iteration.
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Figure 7: Inversion using the I-BFGS algorithm. (a) True
model. (b) Inversion at 200¢4 iteration. (c) Inversion at 600t/
iteration. (d) Inversion at 1000¢/ iteration.
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Figure 8: The inversion using the Adam algorithm. (a) True
model. (b) Inversion at 25¢h iteration. (c) Inversion at 50th
iteration. (d) Inversion at 100¢/ iteration.
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To characterize the relative computational cost of each algo-
rithm, we plot data error versus iteration number in Figure 9.
Compared to the nonlinear CG and I-BFGS algorithms, Adam
is much faster, and exhibits a more stable path to convergence.
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Figure 9: Loss values associated with Adam, CG, L-BFGS
algorithms.

CONCLUSIONS

Deep learning is now being widely applied across scientific
disciplines, including the data-rich problem of seismic analy-
sis and inversion. Our viewpoint is that the approaches which
make maximal use physical models which explain seismic data
will be most likely to succeed in our field; the technical term
for this is theory-guided (or physics-informed in turbulence
modeling). When the forward propagation of information thro-
ugh the network mimics the forward propagation of a wave-
field through a heterogeneous medium, the associated RNN
training process is a form of waveform inversion. Derivation
of the gradient for a least-squares based training of the wave-
form RNN can be shown to be equivalent to the that of FWI
under certain assumptions. In other words, it is correct to refer
to FWI as a strongly constrained, theory-designed deep learn-
ing network. Best learning rate ranges for gradient-based al-
gorithms are theoretically analyzed and experimentally inves-
tigated. Different gradient-based and non-linear algorithms are
inter-compared and cross-compared their internal optimization
is achieved in the 1D seismic inversion sense. To further exam-
ine its capacity and feasibility, the waveform RNN is then ap-
plied to a multidimensional 2D Marmousi model using Adam,
CG, and L-BFGS methods. The results indicate that the com-
putational cost of non-linear CG is much higher than for the
others. The 1-BFGS has better convergence properties, but it
also exacts a high computational cost in recovering detailed in-
formation. The gradient-based Adam converges more rapidly
and recovers detailed velocity information at both shallow and
deep zones.

We view the research in this paper as the first step in creating
a flexible class of waveform inversion methods based on deep
learning, which sit on a spectrum between strongly data-driven
and strongly theory-guided methods. Our main line of ongo-
ing research involves finding algorithms which sit in the centre
of this spectrum, permitting, when data completeness allows,
weights to be trained which are associated with the physics
model as well as the parameter values.
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