

Multi-channel analysis of surface waves (MASW) applied to an active fault zone

Jessie M Arthur <u>jmarthur@ucalgary.ca</u>

Supervisor: Dr. Don C. Lawton

Outline

- 1. Introduction: Objectives, MASW
- 2. Geologic Setting & Data Acquisition
- 3. Data Processing
- 4. Dispersion Analysis
- 5. *Preliminary* Inversion Results
- 6. Future Work

Objectives

Apply the MASW method to delineate a known fault zone

2. Identify soil conditions that have risk for high liquefaction potential

MASW (Park et al., 1999)

- Goal is to generate a Vs profile though multi-channel analysis of surface waves (ground roll)
- Dispersion: For each unique frequency component of a surface wave, a different propagation velocity exists.

Rayleigh Wave Animation

Animation source: L. Braile, Purdue University, www.eas.purdue.edu/~braile

© Copyright 2004. L. Braile. Permission granted for reproduction and use of files and animations for non-commercial uses

Geologic Setting

GEOPHONES	Sensor SM-24 10 Hz vertical component
SEISMIC SOURCE	IVI Envirovibe. 10 – 120 Hz Sweep, 10 sec, 8 sweeps.
RECORDER	4000 ms recording length, 1 ms sample rate

Data Processing (Promax)

A feel for the data...

A feel for the data...

Shot 500 AGC 1000

Shot 390

Raw

Shot 390 BP Filt 0-4-30-36

Shot 390 BP Filt 0-4-30-36 & AGC 1000

Shot 380 – Raw with AGC (Mean with OpLen=1000). Gain = 1.5

Shot 380 – What I am keeping (Post-Radial Filter)

Shot 380 – What I am throwing away

Shot 410 – Raw with AGC (Mean with OpLen=1000). Gain = 1.5

Shot 410 – What I am keeping (Post-Radial Filter)

Shot 410 – What I am throwing away

SHOT 500: AGC. Before Radial Filter

SHOT 500: AGC. After Radial Filter 30 Hz max

POST RADIAL FILT: No Mute

POST RAD FILTER: WITH TOP MUTE

POST RADIAL FILTER Mute & Off-END GEOM

Dispersion Analysis with KGS SURFSEIS

- Create the best overtone image as possible to analyze changing phase velocity patterns with frequency.
- 2. Find best parameters to pick dispersion curve

Dispersion Analysis: THE BIG PICTURE

Shot 360: Phase Velocity: 0 – 10000 m/s Frequency: 6 – 40 Hz

Dispersion Analysis: Within the expected range

Shot 360: Phase Velocity: 0 – 1000 m/s Frequency: 6 – 40 Hz

S-WAVE VELOCITY MODEL SHOT 450

Preliminary Inversion Results

Initial model created from each dispersion curve

RMS Error

Future Work

- 1. Consider applying additional FK Filters
- 2. Analysis of left Off-End records
- 3. Further analysis of inversion parameters
- 4. Interpretation of results
- 5. Consider all suggestions from today's meeting!

Thank you

- Helen Isaac and Malcolm Bertram
- David Henley
- Kevin Hall
- Roohollah Askari
- CREWES Sponsors

References

Park, C.B., R.D. Miller, and J. Xia, 1999, Multichannel analysis of surface waves, Geophysics, **64**, 800-808.