Non-stationary deconvolution and imaging of 2D tissue sensing adaptive radar data

Adrian Smith, Jérémie Bourqui, Elise Fear, Robert Ferguson

October 11th, 2013

Outline

- Introduction
- Tissue sensing adaptive radar (TSAR) data
- Motivation application to georadar data
- Simulated TSAR data
- Preliminary results
- Further work

Radar Reflection

- Active source
- EM waves
- Reflections caused by changes in dielectric constant (relative permittivity) between different media
- Analogous to seismic reflection experiment
- Different scale (t, f, x, and z)

$$RC = \frac{\sqrt{\varepsilon_{r2}} - \sqrt{\varepsilon_{r1}}}{\sqrt{\varepsilon_{r2}} + \sqrt{\varepsilon_{r1}}}$$

Georadar Example

50 MHz georadar data over road tunnels. (Jol 2009)

Tissue Sensing Adaptive Radar (TSAR)

- Prototype breast imaging technique developed by Dr. Elise Fear and her group in Electrical Engineering at the University of Calgary
- Method uses lower-power signal relative to other medical imaging methods
- TSAR is designed as a patient-friendly technology, as it does not involve breast compression
- Technique is based on imaging mono-static radar reflections
- Reflections result from change in electromagnetic properties between healthy and cancerous tissue
- Similar to georadar

Tissue Sensing Adaptive Radar (TSAR)

Various illustration of TSAR apparatus. (Bourqui et al. 2012)

Tissue Sensing Adaptive Radar (TSAR)

Example TSAR Images

Simulated TSAR Data

- Homogeneous canola oil with imbedded imaging targets (tumors)
- Number and location of targets not known
- Data recorded in the frequency domain
- Frequency range from 0 Hz to 14.99 GHz

Motivation

- Frequency-domain radar data has advantages over field georadar data
- Compare wavelet-shaping filtering with non-stationary deconvolution as preconditioning for imaging
- Improve upon non-stationary deconvolution workflow for radar data
- Properly image diffraction points
- Semi-automation of diffraction imaging for velocity analysis
- Apply methods for TSAR data to field georadar data

Workflow

Amplitude spectrum, input TSAR data

Time domain signal, input TSAR data

Shifted time domain signal, input TSAR data

Synthetic TSAR Pulse

Comparison of Amplitude Spectra

Filtered Amplitude Spectrum

Shifted time domain signal, input TSAR data

Filtered time domain signal, input TSAR data

Shifted time domain signal, input TSAR data

Time domain signal convolved with TSAR pulse

Non-Stationary Deconvolution

Non-Stationary Deconvolution

Inline # 160

Conclusions

- Careful conversion of raw data to time domain is crucial
- First-pass wavelet shaping introduces an apparent phase-shift, must be dealt with carefully
- Non-stationary deconvolution is likely better at preconditioning data for imaging than wavelet shaping

Ongoing / Future Research

- Nonstationary deconvolution workflow
- Imaging (zero offset and pre-stack)
- Semi-automation of diffraction imaging for velocity analysis
- Apply methods to field georadar data

Acknowledgments

- Dr. Rob Ferguson
- Jérémie Bourqui
- Dr. Elise Fear
- CREWES